Skip to main content

The Committee of Networks Approach to Condition Monitoring

  • Chapter
  • First Online:
Condition Monitoring Using Computational Intelligence Methods
  • 1881 Accesses

Abstract

This chapter presents the committee of neural networks method, to which was applied pseudo modal energies, modal properties (natural frequencies and mode shapes), and wavelet transform data simultaneously to identify faults in cylindrical shells. The method was tested to identify faults in a population of ten steel seam-welded cylindrical shells. The committee technique identified faults better than the three individual techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal RE (2005a) Improving electric load forecasts using network committees. Electric Power Syst Res 74:83–94

    Article  Google Scholar 

  • Abdel-Aal RE (2005b) Improved classification of medical data using abductive network committees trained on different feature subsets. Comput Methods Program Biomed 80:141–153

    Article  Google Scholar 

  • Anthony M (2007) On the generalization error of fixed combinations of classifiers. J Comput Syst Sci 73:725–734

    Article  MathSciNet  MATH  Google Scholar 

  • Atalla MJ, Inman DJ (1998) On model updating using neural networks. Mech Syst Signal Process 12:135–161

    Article  Google Scholar 

  • Bacauskiene M, Verikas A (2004) Selecting salient features for classification based on neural network committees. Pattern Recognit Lett 25:1879–1891

    Article  Google Scholar 

  • Baras D, Fine S, Fournier L, Geiger D, Ziv A (2011) Automatic boosting of cross-product coverage using bayesian networks. Int J Software Tools Technol Transfer 13:247–261

    Article  Google Scholar 

  • Basu M (2004) An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling. Electric Power Syst Res 69:277–285

    Article  Google Scholar 

  • Bichindaritz I, Annest A (2010) Case based reasoning with bayesian model averaging: an improved method for survival analysis on microarray data. Lect Notes Comput Sci 6176:346–359

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Bobb JF, Dominici F, Peng RD (2011) A bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities. Biometrics (in Press)

    Google Scholar 

  • Boone EL, Ye K, Smith EP (2011) Assessing environmental stressors via Bayesian model averaging in the presence of missing data. Environmetrics 22:13–22

    Article  MathSciNet  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MathSciNet  MATH  Google Scholar 

  • Cao YJ, Jiang L, Wu QH (2000) An evolutionary programming approach to mixed-variable optimization problems. Appl Math Model 24:931–942

    Article  MATH  Google Scholar 

  • Chen CH, Lin ZS (2006) A committee machine with empirical formulas for permeability prediction. Comput Geosci 32:485–496

    Article  Google Scholar 

  • Clarke B (2003) Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J Mach Learn Res 4:683–712

    Google Scholar 

  • Das A, Reddy NP, Narayanan J (2001) Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals. Comput Methods Programs Biomed 64:87–99

    Article  Google Scholar 

  • Daubechie I (1991) The wavelet transform, time-frequency localization and signal processing. IEEE Trans Info Theory 36:961–1005

    Article  Google Scholar 

  • Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Los Alamos National Laboratory report LA-13070-MS, Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Domingos P (2000) Bayesian averaging of classifiers and the overfitting problem. In: Proceedings of the 17th international conference on machine learning, pp 223–230

    Google Scholar 

  • Drygajlo A, Li W, Qiu H (2011) Adult face recognition in score-age-quality classification space. Lect Notes Comput Sci 6583:205–216

    Article  Google Scholar 

  • Du J, Zhai C, Wan Y (2007) Radial basis probabilistic neural networks committee for palmprint recognition. Lect Notes Comput Sci 4492:819–824

    Article  Google Scholar 

  • Ewins DJ (1995) Modal testing: theory and practice. Research Studies Press, Letchworth

    Google Scholar 

  • Feldkircher M (2011) Forecast combination and Bayesian model averaging: a prior sensitivity analysis. J Forecast (in Press)

    Google Scholar 

  • Fernandes AM, Utkin AB, Lavrov AV, Vilar RM (2004) Development of neural network committee machines for automatic forest fire detection using Lidar. Pattern Recognit 37:2039–2047

    Article  MATH  Google Scholar 

  • Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Hanczar B, Nadif M (2011) Using the bagging approach for biclustering of gene expression data. Neurocomputing 74:1595–1605

    Article  Google Scholar 

  • Haussler D, Kearns M, Schapire RE (1994) Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension. Mach Learn 14:83–113

    MATH  Google Scholar 

  • Hernandez-Lobato D, Martinez-Munoz G, Suarez A (2011) Empirical analysis and evaluation of approximate techniques for pruning regression bagging ensembles. Neurocomputing 74: 2250–2264

    Article  Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14:382–401

    Article  MathSciNet  MATH  Google Scholar 

  • Homayouni H, Hashemi S, Hamzeh A (2010) Instance-based ensemble learning algorithm with stacking framework. In: Proceedings of the 2nd international conference on software technology and engineering, pp 164–169

    Google Scholar 

  • Hu G, Mao Z, He D, Yang F (2011) Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm. Comput Chem Eng 35(12):2611–2617

    Article  Google Scholar 

  • Huang X, Zhang L, Gong W (2011) Information fusion of aerial images and LIDAR data in urban areas: vector-stacking, re-classification and post-processing approaches. Int J Remote Sens 32:69–84

    Article  Google Scholar 

  • Imregun M, Visser WJ, Ewins DJ (1995) Finite element model updating using frequency response function data I: theory and initial investigation. Mech Syst Signal Process 9:187–202

    Article  Google Scholar 

  • Jafari SA, Mashohor S, Jalali Varnamkhasti M (2011) Committee neural networks with fuzzy genetic algorithm. J Petrol Sci Eng 76:217–223

    Article  Google Scholar 

  • Jasra A, Holmes CC (2011) Stochastic boosting algorithms. Stat Comput 21:335–347

    Article  MathSciNet  Google Scholar 

  • Jia J, Xiao X, Liu B, Jiao L (2011) Bagging-based spectral clustering ensemble selection. Pattern Recognit Lett 32:1456–1467

    Article  Google Scholar 

  • Jordan MI, Bishop CM (1996) Neural networks. MIT technology report artificial intelligence. Memo no. 1562, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Kadkhodaie-Ilkhchi A, Reza Rezaee M, Rahimpour-Bonab H (2009) A committee neural network for prediction of normalized oil content from well log data: an example from South Pars Gas Field, Persian Gulf. J Petrol Sci Eng 65:23–32

    Article  Google Scholar 

  • Kajdanowicz T, Kazienko P (2011) Structured output element ordering in boosting-based classification. Lect Notes Comput Sci 6679:221–228

    Article  Google Scholar 

  • Karimpouli S, Fathianpour N, Roohi J (2010) A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using Supervised Committee Machine Neural Network (SCMNN). J Petrol Sci Eng 73:227–232

    Article  Google Scholar 

  • Khoshgoftaar TM, van Hulse J, Napolitano A (2011) Comparing boosting and bagging techniques with noisy and imbalanced data. IEEE Trans Syst Man Cybern A Syst Hum 41:552–568

    Article  Google Scholar 

  • Kyung YJ, Lee HS (1999) Bootstrap and aggregating VQ classifier for speaker recognition. Electron Lett 35:973–974

    Article  Google Scholar 

  • Larios N, Lin J, Zhang M, Lytle D, Moldenke A, Shapiro L, Dietterich T (2011) Stacked spatial-pyramid kernel: an object-class recognition method to combine scores from random trees. In: Proceedings of the IEEE workshop on application of computer vision, pp 329–335

    Google Scholar 

  • Leitenstorfer F, Tutz G (2011) Estimation of single-index models based on boosting techniques. Stat Model 11:203–217

    Article  MathSciNet  Google Scholar 

  • Levin RI, Lieven NAJ (1998) Dynamic finite element updating using neural networks. J Sound Vib 210:593–608

    Article  Google Scholar 

  • Li W, Drygajlo A, Qiu H (2010) Aging face verification in score-age space using single reference image template. In: Proceedings of the IEEE 4th international conference on biometrics: theory, application and Systems, Washington, DC, pp 1–7

    Google Scholar 

  • Liew KM, Wang Q (1998) Application of wavelet theory for crack identification in structures. J Eng Mech 124:152–157

    Article  Google Scholar 

  • Louzada F, Anacleto-Junior O, Candolo C, Mazucheli J (2011) Poly-bagging predictors for classification modelling for credit scoring. Expert Syst Appl 38:12717–12720

    Article  Google Scholar 

  • Maia NMM, Silva JMM (1997) Theoretical and experimental modal analysis. Research Studies Press, Letchworth

    Google Scholar 

  • Marwala T (1999) Probabilistic damage identification using neural networks and modal properties. University of Cambridge Technical Report CUED/C-MECH/TR-76, University of Cambridge, Cambridge

    Google Scholar 

  • Marwala T (2000) On damage identification using a committee of neural networks. J Eng Mech 126:43–50

    Article  Google Scholar 

  • Marwala T (2001) Probabilistic fault identification using a committee of neural networks and vibration data. J Aircraft 38:138–146

    Article  Google Scholar 

  • Marwala T (2009) Computational intelligence for missing data imputation, estimation and management: knowledge optimization techniques. IGI Global Publications, New York

    Book  Google Scholar 

  • Marwala T, Heyns PS (1998) Multiple-criterion method for determining structural damage. Am Inst Aeronaut Astronaut J 36:1494–1501

    Google Scholar 

  • Marwala T, Hunt HEM (1999) Fault identification using finite element models and neural networks. Mech Syst Signal Process 13:475–490

    Article  Google Scholar 

  • Marwala T, de Wilde P, Correia L, Mariano P, Ribeiro R, Abramov V, Szirbik N, Goossenaerts J (2001) Scalability and optimisation of a committee of agents using genetic algorithm. In: Proceedings of the international symposium on soft computing and intelligent systems for industry, pp 1–6

    Google Scholar 

  • Newland DE (1993) An introduction to random vibration, spectral and wavelet analysis. Longman/John Wiley, New York/Harlow

    Google Scholar 

  • Osawa T, Mitsuhashi H, Uematsu Y, Ushimaru A (2011) Bagging GLM: improved generalized linear model for the analysis of zero-inflated data. Ecol Info 6(5):270–275

    Article  Google Scholar 

  • Park I, Grandhi RV (2010) Quantification of multiple types of uncertainty in computer simulation using bayesian model averaging. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, pp 1–6

    Google Scholar 

  • Park I, Grandhi RV (2011) Quantifying multiple types of uncertainty in physics-based simulation using Bayesian model averaging. Am Inst Aeronaut Astronaut J 49:1038–1045

    Google Scholar 

  • Paya BA, Esat II, Badi MNM (1997) Artificial neural network based fault diagnostics of rotating machinery using wavelet transforms as a pre-processor. Mech Syst Signal Process 11:751–765

    Article  Google Scholar 

  • Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for hybrid neural networks. In: Mammone RJ (ed) Artificial neural networks for speech and vision. Chapman and Hall, London

    Google Scholar 

  • Pino-Mejias R, Jimenez-Gamero MD, Cubiles-de-la-Vega MD, Pascual-Acosta A (2008) Reduced bootstrap aggregating of learning algorithms. Pattern Recognit Lett 29:265–271

    Article  Google Scholar 

  • Potempski S, Galmarini S, Riccio A, Giunta G (2010) Bayesian model averaging for emergency response atmospheric dispersion multimodel ensembles: is it really better? How many data are needed? Are the weights portable? J Geophys Res. doi:10.1029/2010JD014210

    Google Scholar 

  • Rajan CCA, Mohan MR (2007) An evolutionary programming based simulated annealing method for solving the unit commitment problem. Int J Electric Power Energy Syst 29:540–550

    Article  Google Scholar 

  • Reddy NP, Buch OA (2003) Speaker verification using committee neural networks. Comput Methods Programs Biomed 72:109–115

    Article  Google Scholar 

  • Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39

    Article  Google Scholar 

  • Sheikh-Ahmad J, Twomey J, Kalla D, Lodhia P (2007) Multiple regression and committee neural network force prediction models in milling FRP. Mach Sci Technol 11:391–412

    Google Scholar 

  • Shi L, Xu G (2001) Self-adaptive evolutionary programming and its application to multi-objective optimal operation of power systems. Electric Power Syst Res 57:181–187

    Article  Google Scholar 

  • Shiraishi Y, Fukumizu K (2011) Statistical approaches to combining binary classifiers for multi-class classification. Neurocomputing 74:680–688

    Article  Google Scholar 

  • Sill J, Takacs G, Mackey L, Lin D (2009) Feature-weighted linear stacking. arXiv:0911.0460

    Google Scholar 

  • Smyth P, Wolpert DH (1999) Linearly combining density estimators via stacking. Mach Learn J 36:59–83

    Article  Google Scholar 

  • Tang B, Chen Q, Wang X, Wang X (2010) Reranking for stacking ensemble learning. Lect Notes Comput Sci 6443:575–584

    Article  Google Scholar 

  • Tsai MY, Hsiao CK, Chen WJ (2011) Extended bayesian model averaging in generalized linear mixed models applied to schizophrenia family data. Ann Hum Genet 75:62–77

    Article  Google Scholar 

  • van Hinsbergen CPIJ, van Lint JWC, van Zuylen HJ (2009) Bayesian committee of neural networks to predict travel times with confidence intervals. Trans Res C Emerg Technol 17:498–509

    Article  Google Scholar 

  • Wang G, Hao J, Ma J, Jiang H (2011) A comparative assessment of ensemble learning for credit scoring. Expert Syst Appl 38:223–230

    Article  Google Scholar 

  • Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1999) An efficient method to estimate bagging’s generalization error. Mach Learn J 35:41–55

    Article  MATH  Google Scholar 

  • Yu Q (2011) Weighted bagging: a modification of adaboost from the perspective of importance sampling. J Appl Stat 38:451–463

    Article  MathSciNet  Google Scholar 

  • Zhao ZQ, Huang DS, Sun BY (2004) Human face recognition based on multi-features using Neural Networks Committee. Pattern Recognit Lett 25:1351–1358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Marwala, T. (2012). The Committee of Networks Approach to Condition Monitoring. In: Condition Monitoring Using Computational Intelligence Methods. Springer, London. https://doi.org/10.1007/978-1-4471-2380-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2380-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2379-8

  • Online ISBN: 978-1-4471-2380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics