Blood and Lymph

  • Shirley V. Hodgson
  • William D. Foulkes
  • Charis Eng
  • Eamonn R. Maher


Leukemia is responsible for approximately 2 % of all cancers, with an incidence of about 8 per 100,000 in the UK. Acute myeloid and lymphoblastic leukemia (AML and ALL) account for about 1 % of all cancers and 1.5 % of cancer deaths. The age incidence of leukemia shows two peaks, in childhood and in the elderly. Genetic factors are not considered to have a prominent role in the pathogenesis of acute leukemia or in chronic myeloid leukemia, but have been implicated in chronic lymphocytic leukemia. Guns et al. (1975) studied the incidence of leukemia in relatives of 909 patients with leukemia. The overall incidence of leukemia in first-degree relatives was three times higher than expected although only 2 % of patients had a first-degree relative with leukemia. Among the main subtypes of leukemia, an increased risk to relatives was most marked in chronic lymphocytic leukemia, less so in acute leukemia and absent in chronic myeloid leukemia. When familial clusters of leukemia have been reported, the type of leukemia in individual relatives is not always concordant. Familial leukemia does not necessarily indicate a genetic cause, and shared exposure to an environmental leukemogen also needs to be considered, particularly in childhood acute leukemia. In Western countries, leukemia affects approximately 1–2 % of the population. B cell chronic lymphocytic leukemia (CLL) is the most common form of leukemia, accounting for around 30 % of all cases. The incidence rate of CLL increases logarithmically from age 35, with a median age of diagnosis at 65 years Acute myeloid and lymphoblastic leukemia (AML and ALL) account for about 1 % of all cancers and 1.5 % of cancer deaths. The age incidence of leukemia shows two peaks, in childhood and in the elderly. Genetic factors are not considered to have a prominent role in the pathogenesis of acute leukemia or chronic myeloid leukemia, but genes are being identified which do play a role in leukemia susceptibility, particularly chronic lymphocytic leukemia. Among the main subtypes of leukemia, an increased risk to relatives is most marked in chronic lymphocytic leukemia and less so in acute leukemia, but when familial clusters of leukemia have been reported, the type of leukemia in individual relatives is not always concordant. An increased relative risk of leukaemia is found in the siblings, especially twins, of cases of childhood ALL suggesting a significant contribution of genetic factors (Kharazmi et al. 2013). Exposure to environmental factors may also play a part, particularly in childhood acute leukemia, where an infectious etiology has been suggested to account for increased numbers of cases in areas where there has been a sudden influx of people to a town with increased population mixing, a possible contributing cause for increased cases seen in areas around certain nuclear sites (Kinlen 2011; Bithell et al. 2008). Recent genome-wide association studies have identified loci which may contribute small alterations in relative risk of leukemia, especially CLL (Brown 2008).


Acute Myeloid Leukemia Acute Lymphoblastic Leukemia Chronic Lymphocytic Leukemia Chronic Myeloid Leukemia Acute Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander FE, Jarrett RF, Cartwright RA, Armstrong AA, Gokhale DA, Kane E, Gray D, Lawrence DJ, Taylor GM. Epstein-Barr Virus and HLA-DPB1-*0301 in young adult Hodgkin’s disease: evidence for inherited susceptibility to Epstein-Barr Virus in cases that are EBV(+ ve). Cancer Epidemiol Biomark Prev. 2001;10(6):705–9.Google Scholar
  2. Altieri A, Bermejo JL, Hemminki K. Familial risk for non-Hodgkin lymphoma and other lymphoproliferative malignancies by histopathologic subtype: the Swedish Family-Cancer Database. Blood. 2005;106:668–72.PubMedGoogle Scholar
  3. Altieri A, Chen B, Bermejo JL, Castro F, Hemminki K. Familial risks and temporal incidence trende of multiple myeloma. Eur J Cancer. 2006;42(11):1661–70.PubMedGoogle Scholar
  4. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, Liu E, Sergueeva AI, Miasnikova GY, Mole D, Maxwell PH, Stockton DW, Semenza GL, Prchal JT. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32:614–21.PubMedGoogle Scholar
  5. Arico M, Nichols K, Whitlock JA, Arceci R, Haupt R, Mittler U, Kuhne T, Lombardi A, Ishii E, Egeler RM, Danesino C. Familial clustering of Langerhans cell histiocytosis. Br J Haematol. 1999;107:883–8.PubMedGoogle Scholar
  6. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15.PubMedGoogle Scholar
  7. Bastida P, García-Miñaúr S, Ezquieta B, Dapena JL, Sanchez de Toledo J. Myeloproliferative disorder in Noonan syndrome. J Pediatr Hematol Oncol. 2011;33(1):e43–5.PubMedGoogle Scholar
  8. Baumler C, Duan F, Onel K, et al. Differential recruitment of caspase 8 to cFlip confers sensitivity or resistance to Fas-mediated apoptosis in a subset of familial lymphoma patients. Leuk Res. 2003;27:841–51.PubMedGoogle Scholar
  9. Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, Elimelech A, Shochat C, Cazzaniga G, Biondi A, Basso G, Cario G, Schrappe M, Stanulla M, Strehl S, Haas OA, Mann G, Binder V, Borkhardt A, Kempski H, Trka J, Bielorei B, Avigad S, Stark B, Smith O, Dastugue N, Bourquin JP, Tal NB, Green AR, Izraeli S. Mutations of JAK2 in acute lymphoblastic leukemia associated with Down syndrome. Lancet. 2008;372(9648):1484–92.PubMedGoogle Scholar
  10. Bithell JF, Keegan TJ, Kroll ME, Murphy MF, Vincent TJ. Childhood leukaemia near British nuclear installations: methodological issues and recent results. Radiat Prot Dosim. 2008;132:191–7.Google Scholar
  11. Blattner WA, Garber JE, Mann DL, et al. Waldenstrom’s macroglobulinaemia and autoimmune disease in a family. Ann Int Med. 1980;93:830–2.PubMedGoogle Scholar
  12. Brown J. Inherited predisposition to chronic lymphatic leukemia. Expert Rev Haematol. 2008;1(1):51–61.Google Scholar
  13. Campbell PJ. Somatic and germline genetics at the JAK2 locus. Nat Genet. 2009;41:385–6.PubMedGoogle Scholar
  14. Cetiner M, Adiguzel C, Argon D, Ratip S, Eksioglu-Demiralp E, Tecimer T, Bayik M. Hairy cell leukemia in father and son. Med Oncol. 2003;20(4):375–8.PubMedGoogle Scholar
  15. Chakravarti A, Halloran SL, Bale SJ, Tucker MA. Etiological heterogeneity in Hodgkin’s disease: HLA linked and unlinked determinants of susceptibility independent of histological concordance. Genet Epidemiol. 1986;3:407–15.PubMedGoogle Scholar
  16. Chang ET, Smedby KE, Hjalgrim H, et al. Family history of haematopoietic malignancy and risk of lymphoma. JNCI. 2005;97:1466–74.PubMedGoogle Scholar
  17. Clementi R, Locatelli F, Dupre L, Garaventa A, Emmi L, Bregni M, Cefalo G, Moretta A, Danesino C, Comis M, Pession A, Ramenghi U, Maccario R, Arico M, Roncarolo MG. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood. 2005;105:4424–8.PubMedGoogle Scholar
  18. Colovic MD, Jankovic GM, Wiernik PH. Hairy cell leukemia in first cousins and review of the literature. Eur J Haematol. 2001;67(3):185–8.PubMedGoogle Scholar
  19. Comotti B, Bassan R, Buzzeti M, Finazzi G, Barbui T. Multiple myeloma in a pair of twins. Br J Haematol. 1987;65:123–4.PubMedGoogle Scholar
  20. Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, Ruiz-Ponte C, Enjuanes A, Rosenquist R, Carracedo A, Jurlander J, Campo E, Juliusson G, Montserrat E, Smedby KE, Dyer MJ, Matutes E, Dearden C, Sunter NJ, Hall AG, Mainou-Fowler T, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Allsup DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Parker A, Oscier D, Allan JM, Catovsky D, Houlston RS. Common variants at 2q37.3, 8q24.21,15q21.3 and 16q24.1 influence chronic lymphocytic leukaemia risk. Nat Genet. 2010;42:132138.Google Scholar
  21. Daghistani D, Toledano SR, Curless R. Monosomy 7 syndrome. Cancer Genet Cytogenet. 1990;44:263–9.PubMedGoogle Scholar
  22. Davies HD, Leusink GL, McConnell A, Deyell M, Cassidy SB, Fick GH, Coppes MJ. Myeloid leukemia in Prader–Willi syndrome. J Pediatr. 2003;142:174–8.PubMedGoogle Scholar
  23. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, and 25 others. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.Google Scholar
  24. De Moor P. A hereditary form of acute lymphoblastic leukemia. Leukemia. 1988;2(8):556. PMID:3166082.PubMedGoogle Scholar
  25. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sellick G, Wild R, Sullivan K, Vijayakrishnan J, Wang Y, Pittman AM, Sunter NJ, Hall AG, Dyer MJ, Matutes E, Dearden C, Mainou-Fowler T, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Hillmen P, Allsup DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Allan JM, Catovsky D, Houlston RS. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2008;40(10):1204–10.PubMedGoogle Scholar
  26. Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103:4198–200.PubMedGoogle Scholar
  27. Dowton SB, Beardsley D, Jamison D, Blattner S, Lie FP. Studies of a familial platelet disorder. Blood. 1985;65:557–65.PubMedGoogle Scholar
  28. Ernst T, Chase AJ, Score J, et al. Iactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2011;42:722–5.Google Scholar
  29. Eyster M, Saletan SL, Rabellino EM, et al. Familial essential thrombocythemia. Am J Med. 1986;89:497–502.Google Scholar
  30. Feldmann J, Callebaut I, Raposo G, et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–73.PubMedGoogle Scholar
  31. Ferraris AM, Racchi O, Rapezzi D, Gaetani GF, Boffetta P. Familial Hodgkin’s disease: a disease of young adulthood? Ann Hematol. 1997;74:131–4.PubMedGoogle Scholar
  32. Fine JM, Muller JY, Rochu D, et al. Waldenstrom’s macroglobulinaemia in monozygotic twins. Acta Med Scand. 1986;220:369–73.PubMedGoogle Scholar
  33. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC, Greaves M. In utero rearrangements in the trithorax-related oncogene in infant leukemia. Nature. 1993;363:358–60.PubMedGoogle Scholar
  34. Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D, Cazzaniga G, Enver T, Greaves M. The TEL-AML1 leukaemia fusion gene dysregulates the TGF-β pathway in early B lineage progenitor cells. J Clin Invest. 2009;119(4):826–36.PubMedGoogle Scholar
  35. Ganly P, Walker LC, Morris CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukaemia. Leuk Lymphome. 2004;45(1):1–10.Google Scholar
  36. Goldin LR, Pfeiffer RM, Hemminki K. Familial risk of lymphoproliferativce tumours in families of patients with chronic lymphocytic leukaemia: results from the Swedish Family-Cancer Database. Blood. 2004;104(6):1850–4.PubMedGoogle Scholar
  37. Goldin LR, Slager SL, Caporaso NE. Familial chronic lymphocytic leukaemia. Curr Opin Haematol. 2010;17:350–5.Google Scholar
  38. Goransdotter Ericson K, Fadeel B, Nilsson-Ardnor S, et al. Spectrum of perforin gene mutations in familial hemophagocytic lymphohistiocytosis. Am J Hum Genet. 2001;68:590–7.PubMedGoogle Scholar
  39. Graham GE, Graham LM, Bridge PJ, Maclaren LD, Wolff JEA, Coppes MJ, Egeler RM. Further evidence for genetic heterogeneity in familial hemophagocytic lymphohistiocytosis (FHLH). Pediatr Res. 2000;48:227–32.PubMedGoogle Scholar
  40. Grass S, Preuss KD, Wikowicz A, Terpos E, Ziepert M, Nikolaus D, Yang Y, Fadle N, Regitz E, Dimopoulos MA, Treon SP, Hunter ZR, Pfreundschuh M. Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Blood. 2011;117(10):2918–23.PubMedGoogle Scholar
  41. Gunz FW, Gunz JP, Veale AMO, Chapman CJ, Houston IE. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975;15:117–31.Google Scholar
  42. Heim S, Mitelman F. Cancer cytogenetics. New York: Alan Liss Inc.; 1987.Google Scholar
  43. Hemminki K. Re: familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst. 2002;94(6):462–3.PubMedGoogle Scholar
  44. Hjalgrim H, Rasmussen S, Rostgaard K, Nielsen NM, Koch-Henriksen N, Munksgaard L, Storm HH, Melbye M. Familial clustering of Hodgkin lymphoma and multiple sclerosis. J Natl Cancer Inst. 2004;96(10):780–4.PubMedGoogle Scholar
  45. Horwitz LJ, Levy RN, Rosner F. Multiple myeloma in three siblings. Arch Intern Med. 1985;145:1449–50.PubMedGoogle Scholar
  46. Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am J Hum Genet. 1996;59:990–8.PubMedGoogle Scholar
  47. Horwitz M, Benson KF, Li FQ, Wolff J, Leppert MF, Hobson L, Mangelsdorf M, Yu S, Hewett D, Richards RI, Raskind WH. Genetic heterogeneity in familial acute myelogenous leukemia: evidence for a second locus at chromosome 16q21–23.2. Am J Hum Genet. 1997;61:873–81.PubMedGoogle Scholar
  48. Houlston RS. Low penetrance susceptibility to haematological malignancy. Curr Opin Genet Dev. 2010;20:245–50.PubMedGoogle Scholar
  49. Houlston RS, Sellick G, Yuille M, Matutes E, Catovsky D. Causation of chronic lymphocytic leukemia – insights from familial disease. Leuk Res. 2003;27:871–6.PubMedGoogle Scholar
  50. Ishibe N, Sgambati MT, Fontaine L, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42:99–108.PubMedGoogle Scholar
  51. Izraeli S. Perspective: chromosomal aneuploidy in leukemia – lessons from Down syndrome. Haematol Oncol. 2005;24(1):3–6.Google Scholar
  52. Izraeli S, Rainis L, Hertzberg L, Smooha G, Birger Y. Trisomy of chromosome 21 in leukemogenesis. Blood Cell Mol Dis. 2007;39(2):156–9.Google Scholar
  53. Jacobs A. Benzene and leukemia. Br J Haematol. 1989;12:119–21.Google Scholar
  54. Jedlickova K, Stockton DW, Prchal JT. Possible primary familial and congenital polycythemia locus at 7q22.1–7q22.2. Blood Cell Mol Dis. 2003;31:327–31.Google Scholar
  55. Judson IR, Wiltshaw E, Newland AC. Multiple myeloma in a pair of monozygotic twins: the first reported case. Br J Haematol. 1985;60:551–4.PubMedGoogle Scholar
  56. Kalff MW, Hijmans W. Immunoglobulin analysis in families of macroglobulinaemia patients. Clin Exp Immunol. 1969;5:479–98.PubMedGoogle Scholar
  57. Kearney L, De Castro DG, Yeung J, Procter J, Horsley SW, Eguchi-Ishimae M, Bateman CM, Anderson K, Chaplin T, Young BD, Harrison CJ, Kempski H, So CW, Ford AM, Greaves M. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–8.PubMedGoogle Scholar
  58. Kersey JH, Shapiro RS, Filipovich AH. Relationship of immunodeficiency to lymphoid malignancy. Pediatr Infect Dis J. 1988;7:510–2.Google Scholar
  59. Kikuchi M, Tayama T, Hayakawa H, Takahashi I, Hoshino H, Ohsaka A. Familial thrombocytosis. Br J Haematol. 1995;89:900–2.PubMedGoogle Scholar
  60. Kinlen L. Childhood leukaemia, nuclear sites, and population mixing. Br J Cancer. 2011;104(1):12–8.PubMedGoogle Scholar
  61. Klitz W, Aldrich CL, Fildes N, Horning SJ, Begovich AB. Localization of predisposition to Hodgkin disease in the HLA class II region. Am J Hum Genet. 1994;54:497–505.PubMedGoogle Scholar
  62. Klusmann JH, Creutzig U, Zimmerman M, Dworzak M, Jorch N, Langebrake C, Pekrun A, Macakova-Reingardt K, Reinhardt D. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood. 2007;111(6):2991–8.Google Scholar
  63. Kondo T, Okabe M, et al. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood. 1998;92:1091–6.PubMedGoogle Scholar
  64. Kralovics R, Sokol L, Prchal JT. Absence of polycythemia in a child with aunique erythropoietin receptor mutation in a family with autosomal dominant primary polycythemia. J Clin Invest. 1998;102(1):124–9.PubMedGoogle Scholar
  65. Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102:3793–6.PubMedGoogle Scholar
  66. Kurzrock R, Guterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukaemias. N Engl J Med. 1988;319:990–8.PubMedGoogle Scholar
  67. Kwong YL, Ng MH, Ma SK. Familial acute myeloid leukemia with monosomy 7: late onset and involvement of a multipotential progenitor cell. Cancer Genet Cytogenet. 2000;116:170–3.PubMedGoogle Scholar
  68. Laurent EL, Talpaz M, Kantarjian H, Kurzrock R. The BCR gene and Philadelphia chromosome-positive leukaemogenesis. Cancer Res. 2001;61:2343–55.PubMedGoogle Scholar
  69. Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P, Casadevall N, Vainchenker W. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood. 1996;87:1502–11.PubMedGoogle Scholar
  70. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, and 10 others. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008;319(5870):1676–9.Google Scholar
  71. Lynch HT, Marcus JN, Weisenburger DD, et al. Genetic and immunopatho-logical findings in a lymphoma family. Br J Cancer. 1989;59:622–6.PubMedGoogle Scholar
  72. Lynch HT, Sanger WG, Pirruccello S, Quinn-Laquer B, Weisenburger DD. Familial multiple myeloma: a family study and review of the literature. J Natl Cancer Inst. 2001;93(19):1479–83.PubMedGoogle Scholar
  73. Lynch HT, Weisenburger DD, Quinn-Laquer B, Watson P, Lynch JF, Sanger WG. Hereditary chronic lymphocytic leukemia: an extended family study and literature review. Am J Med Genet. 2002;115:113–7.PubMedGoogle Scholar
  74. Lynch HT, Ferrara K, Barlogie B, et al. Familial myeloma. NEJM. 2008a;359:152–7.PubMedGoogle Scholar
  75. Lynch HT, Ferrara KM, Weisenburger DD, Sanger WG, Lynch JF, Thomé SD. Genetic counseling for DAPK1 mutation in a chronic lymphocytic leukemia family. Cancer Genet Cytogenet. 2008b;186(2):95–102.PubMedGoogle Scholar
  76. Ma W, Zhang X, Wang X, et al. MPL mutation profile in Jak2 mutation-negative patients with myeloproliferative disorders. Diagn Mol Pathol. 2011;20(1):34–9.PubMedGoogle Scholar
  77. Mack TM, Cozen W, Shibata DK. Concordance for Hodgkin’s Disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332:413–8.PubMedGoogle Scholar
  78. McMaster ML. Familial Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:146–52.PubMedGoogle Scholar
  79. McMaster ML, Goldin LR, Bai Y, et al. Genomewide linkage screen for Waldenstraom macroglobulinaemia susceptibility loci in high-risk families. Am J Hum Genet. 2006;79:695–701.PubMedGoogle Scholar
  80. Menko FH, Kaspers GL, Meijer GA, Claes K, van Hagen JM, Gille JJ. A homozygous MSH6 mutation in a child with café-au-lait spots, oligodendroglioma and rectal cancer. Fam Cancer. 2004;3(2):123–7.PubMedGoogle Scholar
  81. Miller RW. Deaths from childhood leukemia and solid tumours among twins and other sibs in the United States, 1960–67. J Natl Cancer Inst. 1971;46:203–9.Google Scholar
  82. Mulligan CG. JAK2 – a new player in acute lymphoblastic leukemia. Lancet. 2008;372(9648):1448–50. Leukemia. 2007 Apr;21(4):830–3. Epub 2007 Feb 15.Google Scholar
  83. Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S, Finklestein JZ, Sakamoto KM, Gorr TA, Mehta P, Schmid I, Kropshofer G, Corbacioglu S, Lang PJ, Klein C, Schlegel PG, Heinzmann A, Schneider M, Starý J, van den Heuvel-Eibrink MM, Hasle H, Locatelli F, Sakai D, Archambeault S, Chen L, Russell RC, Sybingco SS, Ohh M, Braun BS, Flotho C, Loh ML. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794–800.PubMedGoogle Scholar
  84. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.Google Scholar
  85. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, Bos JM, Ommen SR, Esposito G, Lepri F, Faul C, Mundel P, López Siguero JP, Tenconi R, Selicorni A, Rossi C, Mazzanti L, Torrente I, Marino B, Digilio MC, Zampino G, Ackerman MJ, Dallapiccola B, Tartaglia M, Gelb BD. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–12.PubMedGoogle Scholar
  86. Park S, Picard F, Dreyfus F. Erythroleukemia: a need for a new definition. Leukemia. 2002;16:1399–401.PubMedGoogle Scholar
  87. Poley JW, Wagner A, Hoogmans MM, Menko FH, Tops C, Kros JM, Reddingius RE, Meijers-Heijboer H, Kuipers EJ, Dinjens WN, Rotterdam Initiative on Gastrointestinal Hereditary Tumors. Biallelic germline mutations of mismatch-repair genes: a possible cause for multiple pediatric malignancies. Cancer. 2007;109(11):2349–56.PubMedGoogle Scholar
  88. Pottern LM, Linet M, Blair A, et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leuk Res. 1991;15:305–14.PubMedGoogle Scholar
  89. Rabin KR, Whitlock JA. Malignancy in children with trisomy 21. Oncologist. 2009;14(2):164–73.PubMedGoogle Scholar
  90. Raval A, Tanner SM, Byrd JC. Downregulation of death associated protein kinase 1 (DAPK1) in chronic lymphatic leukemia. Cell. 2007;129(5):879–90.PubMedGoogle Scholar
  91. Rawstron AC, Yuille MR, Fuller J, Cullen M, Kennedy B, Richards SJ, Jack AS, Matutes E, Catovsky D, Hillmen P, Houlston RS. Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood. 2002;100(7):2289–90.PubMedGoogle Scholar
  92. Renier G, Ifrah N, Chevailler A, Saint-André JP, Boasson M, Hurez D. Four brothers with Waldenstrom’s macroglobulinaemia. Cancer. 1989;64:1554–9.PubMedGoogle Scholar
  93. Saarinen S, Aavikko M, Altomaki K, et al. Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood. 2011a;118:493–6.PubMedGoogle Scholar
  94. Saarinen S, Aavikko M, Aittomäki K, Launonen V, Lehtonen R, Franssila K, Lehtonen HJ, Kaasinen E, Broderick P, Tarkkanen J, Bain BJ, Bauduer F, Ünal A, Swerdlow AJ, Cooke R, Mäkinen MJ, Houlston R, Vahteristo P, Aaltonen LA. Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood. 2011b;118(3):493–8.PubMedGoogle Scholar
  95. Schlemper RJ, van der Maas APC, Eikenboom JCJ. Familial essential thrombocythemia: clinical characteristics of 11 cases in one family. Ann Hematol. 1994;68:153–8.PubMedGoogle Scholar
  96. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, Warren AJ, Gilliland DG, Lodish HF, Green AR. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.PubMedGoogle Scholar
  97. Shah S, Schrader KA, Waanders E, Timms AE, Vijai J, Miething C, Wechsler J, Yang J, Hayes J, Klein RJ, Zhang J, Wei L, Wu G, Rusch M, Nagahawatte P, Ma J, Chen SC, Song G, Cheng J, Meyers P, Bhojwani D, Jhanwar S, Maslak P, Fleisher M, Littman J, Offit L, Rau-Murthy R, Fleischut MH, Corines M, Murali R, Gao X, Manschreck C, Kitzing T, Murty VV, Raimondi SC, Kuiper RP, Simons A, Schiffman JD, Onel K, Plon SE, Wheeler DA, Ritter D, Ziegler DS, Tucker K, Sutton R, Chenevix-Trench G, Li J, Huntsman DG, Hansford S, Senz J, Walsh T, Lee M, Hahn CN, Roberts KG, King MC, Lo SM, Levine RL, Viale A, Socci ND, Nathanson KL, Scott HS, Daly M, Lipkin SM, Lowe SW, Downing JR, Altshuler D, Sandlund JT, Horwitz MS, Mullighan CG, Offit K. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45:1226–31.PubMedGoogle Scholar
  98. Shugart YY, Collins A. Combined segregation and linkage analysis of 59 Hodgkin’s disease families indicates the role of HLA determinants. EJHG. 2000;8:460–3.PubMedGoogle Scholar
  99. Shugart YY, Hemminki K, Vaittinen P, Kingman A, Dong C. A genetic study of Hodgkin’s lymphoma: an estimate of heritability and anticipation based on the familial cancer database in Sweden. Hum Genet. 2000;106(5):553–6.PubMedGoogle Scholar
  100. Shugart YY, Hemminki K, Vaittinen P, Kingman A. Apparent anticipation and heterogeneous transmission patterns in familial Hodgkin’s and non-Hodgkin’s lymphoma: report from a study based on Swedish cancer database. Leuk Lymphoma. 2001;42(3):407–15.PubMedGoogle Scholar
  101. Skibola CF, Bracci PM, Halperin E, et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat Genet. 2009;41:873–5.PubMedGoogle Scholar
  102. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004;351:2403–7.PubMedGoogle Scholar
  103. Steingrimsdottir H, Einarsdottir HK, Haraldsdottir V, Ogmundsdottir HM. Familial monoclonal gammopathy: hyper-responsive B cells in unaffected family members. Eur J Haematol. 2011;86(5):396–404.PubMedGoogle Scholar
  104. Taylor GM, Gokhale DA, Crowther D, Woll PJ, Harris M, Ryder D, Ayres M, Radford JA. Further investigation of the role of HLA-DPB1 in adult Hodgkin’s disease (HD) suggests an influence on susceptibility to different HD subtypes. Br J Cancer. 1999;80(9):1405–11.PubMedGoogle Scholar
  105. Thunberg U, Tobin G, Johnson A, Soderberg O, Padyukov L, Hultdin M, Klareskog L, Enblad G, Sundstrom C, Roos G, Rosenquist R. Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukemia. Lancet. 2002;360(9349):1935–9.PubMedGoogle Scholar
  106. Tigay JH. A comparison of acute lymphoblastic leukemia in Down syndrome and non-Down syndrome children: the role of trisomy 21. J Paediatr Nurs. 2009;26(6):362–8.Google Scholar
  107. Till MM, Jones LH, Penticess CR, et al. Leukaemia in children and their grand-parents: studies of immune function in six families. Br J Haematol. 1975;29:575–86.Google Scholar
  108. van Dijken PJ, Woldendorp KH, van Wouwe JP. Familial thrombocytosis in infancy presenting with a leukaemoid reaction. Acta Pediatr. 1996;85:1132–4.Google Scholar
  109. Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B, De Paepe P, Verhoef G, Marynen P, Vandenberghe P, De Wolf-Peeters C, Cools J, Wlodarska I. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood. 2011;117(15):4056–64.PubMedGoogle Scholar
  110. Wiernik PH, Wang SQ, Hu X-P, Marino P, Paietta E. Age of onset evidence for anticipation in familial non-Hodgkin’s lymphoma. Br J Haematol. 2000;108:72–9.PubMedGoogle Scholar
  111. Wiley JS, et al. A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukemia: a molecular study. Lancet. 2002;359(9312):1114–9.PubMedGoogle Scholar
  112. Yuille MR, Matutes E, Marossy A, Hilditch B, Catovsky D, Houlston RS. Familial chronic lymphocytic leukemia: a survey and review of published studies. Br J Haematol. 2000;109(4):794–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Shirley V. Hodgson
    • 1
  • William D. Foulkes
    • 2
  • Charis Eng
    • 3
  • Eamonn R. Maher
    • 4
  1. 1.Cancer GeneticsSt Georges HospitalLondonUK
  2. 2.Program in Cancer Genetics Department of Human Genetics, Medicine and OncologyMcGill UniversityMontrealCanada
  3. 3.Genomic Medicine Institute Cleveland ClinicClevelandUSA
  4. 4.Department of Medical GeneticsUniversity of CambridgeCambridgeUK

Personalised recommendations