Energy pp 397-416 | Cite as

Energy Coupling

  • Yaşar Demirel
Part of the Green Energy and Technology book series (GREEN)


Various mechanisms and devices facilitate that an energy-producing process may drive another process requiring energy if energy coupling takes place between these processes. For example, in living systems, synthesis of adenosine triphosphate requires energy and therefore must couple with an energy providing process of electron transport chain. On the other hand, the hydrolysis of adenosine triphosphate supplies the energy needed in living systems. This chapter discusses a very simple and representative analysis of energy coupling in biochemical cycles and energy expenditure. There are five examples within the text and 15 practice problems at the end of the chapter.


Energy Expenditure Oxidative Phosphorylation Electron Transport Chain Basal Metabolic Rate Adenosine Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alberts B, Bary D, Lewis J, Raff M, Roberts K, Watson D (2002) Molecular biology of the cell, 4th edn. Garland, New YorkGoogle Scholar
  2. 2.
    Andrews AJ, Luger K (2010) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol 488:265–285CrossRefGoogle Scholar
  3. 3.
    Andriesse CD, Hollestelle MJ (2001) Minimum entropy production in photosynthesis. Biophys Chem 90:249–253CrossRefGoogle Scholar
  4. 4.
    Brock TD, Brock KM, Ward DM (1986) Basic microbiology with applications, 3rd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  5. 5.
    Cairns CB, Walther J, Harken AL, Banerjee A (1998) Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. Am J Physiol Regul Integr Comp Physiol 433:R1376–R1393Google Scholar
  6. 6.
    Caplan RS, Essig A (1999) Bioenergetics and linear nonequilibrium thermodynamics. The steady state. Harvard University Press, New YorkGoogle Scholar
  7. 7.
    Demirel Y (2007) Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Demirel Y (2008) Thermodynamically coupled transport in simple catalytic reactions. Int J Chem Reactor Eng 6:1–22CrossRefGoogle Scholar
  9. 9.
    Demirel Y, Sandler SI (2002) Thermodynamics of bioenergetics. Biophys Chem 97:87–111CrossRefGoogle Scholar
  10. 10.
    Garby L, Larsen PS (1995) Bioenergetics. Cambridge, New YorkGoogle Scholar
  11. 11.
    Heinrich R, Schuster S (1998) The modeling of metabolic systems. Structure, control and optimality. Biosystems 47:61–77CrossRefGoogle Scholar
  12. 12.
    Korzeniewski B (1997) Thermodynamic regulation of cytochrome oxidase. Mol Cell Biochem 174:137–141CrossRefGoogle Scholar
  13. 13.
    Marks DB (1999) Biochemistry. Kluwer, New YorkGoogle Scholar
  14. 14.
    Nath S (1998) A thermodynamic principle for the coupled bioenergetic processes of ATP synthesis. Pure Appl Chem 70:639–644CrossRefGoogle Scholar
  15. 15.
    Purves WK, Sadava D, Orians GH (2004) Life: the science of biology. MacMillian, AmsterdamGoogle Scholar
  16. 16.
    Sambongi Y, Ueda I, Wada Y, Futai M (2000) A biological molecular motor, proton translocating ATP synthase: multidisciplinary approach for a unique membrane enzyme. J Bioenerg Biomem 32:441–448CrossRefGoogle Scholar
  17. 17.
    Schäfer G, Penefsky H (eds) (2010) Bioenergetics: energy conservation and conversion. Springer, BerlinGoogle Scholar
  18. 18.
    Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Euro J Biochem 109:269–283CrossRefGoogle Scholar
  19. 19.
    Stucki JW (1980) The thermodynamic-buffer enzymes. Euro J Biochem 109:257–267CrossRefGoogle Scholar
  20. 20.
    Stucki JW (1984) Optimization of mitochondrial energy conversions. Adv Chem Phys 55:141–167CrossRefGoogle Scholar
  21. 21.
    Stucki JW (1991) Non-equilibrium thermodynamic sensitivity of oxidative phosphorylation. Proc Biol Sci 244:197–202CrossRefGoogle Scholar
  22. 22.
    Stucki JW, Compiani M, Caplan SR (1983) Efficency of energy-conversion in model biological pumps optimization by linear nonequilibrium thermodynamics relation. Biophys Chem 18:101–109CrossRefGoogle Scholar
  23. 23.
    Soboll S (1995) Regulation of energy metabolism in liver. J Bioenerg Biomem 27:571–582CrossRefGoogle Scholar
  24. 24.
    Soboll S, Stucki JW (1985) Regulation of the degree of coupling of oxidative phosphorylation in intact rat-liver. Biochim Biophys Acta 807:245–254CrossRefGoogle Scholar
  25. 25.
    Tomashek JJ, Brusilow WSA (2000) Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomem 32:493–500CrossRefGoogle Scholar
  26. 26.
    Wilson K, Walker J (2005) Principals & techniques of biochemistry and molecular biology, 6th edn. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Woitczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Yaşar Demirel
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Nebraska LincolnLincolnUSA

Personalised recommendations