Skip to main content

Energy Coupling

  • Chapter
  • First Online:
Book cover Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Various mechanisms and devices facilitate that an energy-producing process may drive another process requiring energy if energy coupling takes place between these processes. For example, in living systems, synthesis of adenosine triphosphate requires energy and therefore must couple with an energy providing process of electron transport chain. On the other hand, the hydrolysis of adenosine triphosphate supplies the energy needed in living systems. This chapter discusses a very simple and representative analysis of energy coupling in biochemical cycles and energy expenditure. There are five examples within the text and 15 practice problems at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Bary D, Lewis J, Raff M, Roberts K, Watson D (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  2. Andrews AJ, Luger K (2010) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol 488:265–285

    Article  Google Scholar 

  3. Andriesse CD, Hollestelle MJ (2001) Minimum entropy production in photosynthesis. Biophys Chem 90:249–253

    Article  Google Scholar 

  4. Brock TD, Brock KM, Ward DM (1986) Basic microbiology with applications, 3rd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  5. Cairns CB, Walther J, Harken AL, Banerjee A (1998) Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles. Am J Physiol Regul Integr Comp Physiol 433:R1376–R1393

    Google Scholar 

  6. Caplan RS, Essig A (1999) Bioenergetics and linear nonequilibrium thermodynamics. The steady state. Harvard University Press, New York

    Google Scholar 

  7. Demirel Y (2007) Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  8. Demirel Y (2008) Thermodynamically coupled transport in simple catalytic reactions. Int J Chem Reactor Eng 6:1–22

    Article  Google Scholar 

  9. Demirel Y, Sandler SI (2002) Thermodynamics of bioenergetics. Biophys Chem 97:87–111

    Article  Google Scholar 

  10. Garby L, Larsen PS (1995) Bioenergetics. Cambridge, New York

    Google Scholar 

  11. Heinrich R, Schuster S (1998) The modeling of metabolic systems. Structure, control and optimality. Biosystems 47:61–77

    Article  Google Scholar 

  12. Korzeniewski B (1997) Thermodynamic regulation of cytochrome oxidase. Mol Cell Biochem 174:137–141

    Article  Google Scholar 

  13. Marks DB (1999) Biochemistry. Kluwer, New York

    Google Scholar 

  14. Nath S (1998) A thermodynamic principle for the coupled bioenergetic processes of ATP synthesis. Pure Appl Chem 70:639–644

    Article  Google Scholar 

  15. Purves WK, Sadava D, Orians GH (2004) Life: the science of biology. MacMillian, Amsterdam

    Google Scholar 

  16. Sambongi Y, Ueda I, Wada Y, Futai M (2000) A biological molecular motor, proton translocating ATP synthase: multidisciplinary approach for a unique membrane enzyme. J Bioenerg Biomem 32:441–448

    Article  Google Scholar 

  17. Schäfer G, Penefsky H (eds) (2010) Bioenergetics: energy conservation and conversion. Springer, Berlin

    Google Scholar 

  18. Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Euro J Biochem 109:269–283

    Article  Google Scholar 

  19. Stucki JW (1980) The thermodynamic-buffer enzymes. Euro J Biochem 109:257–267

    Article  Google Scholar 

  20. Stucki JW (1984) Optimization of mitochondrial energy conversions. Adv Chem Phys 55:141–167

    Article  Google Scholar 

  21. Stucki JW (1991) Non-equilibrium thermodynamic sensitivity of oxidative phosphorylation. Proc Biol Sci 244:197–202

    Article  Google Scholar 

  22. Stucki JW, Compiani M, Caplan SR (1983) Efficency of energy-conversion in model biological pumps optimization by linear nonequilibrium thermodynamics relation. Biophys Chem 18:101–109

    Article  Google Scholar 

  23. Soboll S (1995) Regulation of energy metabolism in liver. J Bioenerg Biomem 27:571–582

    Article  Google Scholar 

  24. Soboll S, Stucki JW (1985) Regulation of the degree of coupling of oxidative phosphorylation in intact rat-liver. Biochim Biophys Acta 807:245–254

    Article  Google Scholar 

  25. Tomashek JJ, Brusilow WSA (2000) Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomem 32:493–500

    Article  Google Scholar 

  26. Wilson K, Walker J (2005) Principals & techniques of biochemistry and molecular biology, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  27. Woitczak L, Schonfeld P (1993) Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183:41–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Demirel, Y. (2012). Energy Coupling. In: Energy. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2372-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2372-9_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2371-2

  • Online ISBN: 978-1-4471-2372-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics