Advertisement

High-Temperature Fuel Cell Plants and Applications

  • Viviana Cigolotti
  • Robert Steinberger-Wilckens
  • Stephen J. McPhail
  • Hary Devianto
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

High-temperature fuel cells (HTFCs) have real and imminent potential for implementation of clean, high-efficiency conversion of renewable and waste-derived fuels. Thanks to their capability to operate relatively easily on hydrocarbon-based fuels, and to their increased durability and higher tolerance to inevitable contaminants in the alternative fuels utilized, these integrated solutions are constantly spreading world-wide. The modular build-up of HTFCs makes them adamantly suitable to a decentralised energy infrastructure, which relieves dependencies on primary energy carrier imports and encourages local productivity. In the transitional phase from fossil to renewable fuels, utilization of natural gas in HTFCs allows for the immediate implementation in the established grid infrastructure, reduces CO2 emissions and accelerates the development to full maturity necessary for large-scale market penetration.

Keywords

Fuel Cell Solid Oxide Fuel Cell Biogas Plant Fuel Cell System Molten Carbonate Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steinberger-Wilckens R, Christiansen N (2010) High temperature fuel cells for distributed generation. In: Stolten D (ed) Hydrogen and fuel cells: fundamentals technologies and applications. Wiley-VCH, Weinheim, pp 735–754Google Scholar
  2. 2.
    Bloom Energy Press Releases (2010) http://www.bloomenergy.com/newsroom/press-releases/
  3. 3.
    Adamson K-A (2008) 2008 Large stationary survey, Fuel Cell TodayGoogle Scholar
  4. 4.
    Moreno A, McPhail S, Bove R (2008) International status of molten carbonate fuel cell (MCFC) technology. European Commission PublicationGoogle Scholar
  5. 5.
    McPhail SJ (2010) Status and challenges of molten carbonate fuel cells. Adv Sci Technol 72:283–290CrossRefGoogle Scholar
  6. 6.
    Database of Landfills and Energy Projects (2004) http://www.epa.gov/lmop/index.htm
  7. 7.
    Stegmann H (2008) Potentials of biological waste treatment technologies on energy production. In: 2nd International symposium on energy from biomass and waste, Venice, Italy, 17–20 Nov 2008Google Scholar
  8. 8.
    Han J (2009) Status of MCFC development in Korea. IEA Annex 23 presentationGoogle Scholar
  9. 9.
    Macchi E (2010) The potential long-term contribution of fuel cells to high-efficiency low carbon- emission power plants. In: International workshop “Fuel cells in the carbon cycle”, Naples, Italy, 12–13 July 2010Google Scholar
  10. 10.
    Steinberger-Wilckens R, Blum L, Buchkremer HP, de Haart LGJ, Malzbender J, Pap M (2011) Recent results in solid oxide fuel cell development at Forschungszentrum Juelich. ECS TransactionsGoogle Scholar
  11. 11.
    Nernst W (1899) Zeitschrift für Elektrochemie. Über Wasserstoffentwicklung 6(2):37–41Google Scholar
  12. 12.
    Singhal SC (1993) Solid oxide fuel cell (SOFC IV). Electrochemical Society, PenningtonGoogle Scholar
  13. 13.
    de Haart LGJ, Mougin J, Posdziech O, Kiviaho J, Menzler NH (2009) Stack degradation in dependence of operation parameters; the real SOFC sensitivity analysis. Fuel Cells 9(6):794–804CrossRefGoogle Scholar
  14. 14.
    Hassmann vK (2000) Produktentwicklung Festelektrolyt-Brennstoffzellen (SOFC) (Product development SOFC). Themen 1999/2000: Zukunftstechnologie BrennstoffzelleGoogle Scholar
  15. 15.
    Huang K (2007) Development of delta-type SOFCs at siemens stationary fuel cells. In: 2007Google Scholar
  16. 16.
    Hosoi K, Nakabaru M (2009) Status of national project for SOFC development in Japan. ECS Trans 25(2):11–20CrossRefGoogle Scholar
  17. 17.
    Payne R, Love J, Kah M (2009) Generating electricity at 60% electrical efficiency from 1 to 2 kWe SOFC products. ECS Trans 25(2):231–240CrossRefGoogle Scholar
  18. 18.
    ASUE (2005) BHKW-Kenndaten 2005—Module, Anbieter, KostenGoogle Scholar
  19. 19.
    Birnbaum U, Steinberger-Wilckens R, Zapp P (in press) Sustainability aspects of SOFC. In: Encyclopedia of sustainability science and technology. Springer, BerlinGoogle Scholar
  20. 20.
    Orsello G, Casanova A, Hoffmann J (2008) Latest info about operation of the siemens SOFC generators CHP100 and SFC5 in a factory. In: 8th European fuel cell forum, Lucerne, p B0204 July 2008Google Scholar
  21. 21.
    Gariglio M, De Benedictis F, Santarelli M, Cal M, Orsello G (2009) Experimental activity on two tubular solid oxide fuel cell cogeneration plants in a real industrial environment. Int J Hydrogen Energy 34(10):4661–4668CrossRefGoogle Scholar
  22. 22.
    Callux (2011) Callux project presentation. http://www.callux.net/home.English.html
  23. 23.
    Callux (2010) Press release 8 Nov 2010Google Scholar
  24. 24.
    Laine J, Fontell E (2008) Status of the SOFC system development at Wärtsilä. In: Fuel cell seminar, Phoenix, USA, 2008Google Scholar
  25. 25.
    Sandström C-E, Phan T, Mahlanen T, Fontell E (2007) Specific targeted research project METHAPU “Validation of renewable methanol based auxiliary power system for commercial vessels”. In: Fuel cell seminar, San Antonio, USA, 2007Google Scholar
  26. 26.
    Rosenberg R, Kiviaho J, Göös J, Jansson P, Jacobsen J, Blum L, Stenberger-Wilckens R (2009) LARGE-SOFC, towards a large SOFC power plant. In: Fuel cell seminar, Palm Springs, Nov 2009Google Scholar
  27. 27.
    Koguchi PH (2010) Country Update—Japan. In: IPHE meeting, 27 Apr 2010Google Scholar
  28. 28.
    Wunderlich C SOFC in Asia. In: 3rd Fuel Cell Day, Freiberg, 2010Google Scholar
  29. 29.
    Mitsubishi Heavy Industries (MHI) (2009) Mitsubishi Heavy Industries, Ltd. http://www.mhi.co.jp/en/power/technology/sofc_system/contents/development_situation.html Accessed 15 Dec 2009
  30. 30.
    Haga T, Komiyama N, Nakatomi H, Konishi K, Sutou T, Kikuchi T (2009) Prototype SOFC CHP system (SOFIT) development and testing. ECS Trans 25(2):71–76CrossRefGoogle Scholar
  31. 31.
    Mitsubishi Heavy Industries (MHI) (2009) MHI Achieves 3,000-Hour Operation, Unprecedented in Japan. JCN NewswiresGoogle Scholar
  32. 32.
    Ceramic Fuel Cells Limited (CFCL) Press releases 29 Jan 2008 and 3 Dec 2010Google Scholar
  33. 33.
    Ceres Power Press releases 14. Jan 2008, 2. Feb 2009, 6. Nov 2009, 20. Dec 2010 and 2010 Annual ReportGoogle Scholar
  34. 34.
    Bloom Energy Customer Profile Documents (2011) www.bloomenergy.com. Accessed Feb 2011
  35. 35.
    Venâncio SA, de Miranda PEV (2009) SOFC Functional anode for the direct oxidation of ethanol. In: European fuel cell forum, Lucerne, 29 June–2 July 2009Google Scholar
  36. 36.
    Höhlein B, Menzer R, Range J (1981) High temperature methanation in the long-distance nuclear energy transport system. Appl Catal 1(3–4):125–139CrossRefGoogle Scholar
  37. 37.
    Steinberger-Wilckens R (2002) Hochtemperatur-Brennstoffzellen als Verbindungsglied zwischen Erdgas- und Wasserstoff-Wirtschaft. In: Proceedings of the Deutscher Wasserstoff-Energietag, Essen, 12–14 Nov 2002Google Scholar

Copyright information

© Springer-Verlag London Limited  2012

Authors and Affiliations

  • Viviana Cigolotti
    • 1
  • Robert Steinberger-Wilckens
    • 2
  • Stephen J. McPhail
    • 3
  • Hary Devianto
    • 4
  1. 1.ENEA—Italian National Agency for New TechnologiesEnergy and Sustainable Economic Development, C.R. PorticiPortici (Naples)Italy
  2. 2.Forschungszentrum JülichJülichGermany
  3. 3.ENEA—Italian National Agency for New TechnologiesEnergy and Sustainable Economic Development, C.R. CasacciaRomeItaly
  4. 4.Department of Chemical Engineering, Faculty Industrial TechnologyBandung Institute of TechnologyBandungIndonesia

Personalised recommendations