Skip to main content

Anaerobic Digestion

  • Chapter
  • First Online:
Fuel Cells in the Waste-to-Energy Chain

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Anaerobic digestion is a complicated biological process through which organic matter is converted into biofuel (a mixture of methane and carbon dioxide) and digestate. It can be a good technology for the development of a distributed power generation system thanks to the wide range of substrates to which it can be applied and to the different biogas end uses. Even if it is considered a well-established technology, many issues, here discussed, are still open. The optimization of the entire process involves many consequential and simultaneous biochemical reactions, digestate treatment for sustainable nutrient recovery and hydrogen production through dark fermentation. At the end of this chapter, the main biogas plant characteristics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39(8):1543–1552

    Article  Google Scholar 

  2. Lema JM, Omil F (2001) Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Sci Technol 44(8):133

    Google Scholar 

  3. Edelmann W, Schleiss K, Joss A (2000) Technological assessment of anaerobic digestion and composting-ecological, energetic and economic comparison of anaerobic digestion with different competing technologies to treat biogenic wastes. Water Sci Technol 41(3):263–274

    Google Scholar 

  4. Sonesson U, Björklund A, Carlsson M, Dalemo M (2000) Environmental and economic analysis of management systems for biodegradable waste. Res Conser Recycl 28 (1–2):29–53

    Google Scholar 

  5. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. BiG > east project. University of Southern Denmark Esbjerg, Esbjerg, Denmark

    Google Scholar 

  6. Piccinini S, Centemero M, Codato F, Valentini F, Rustichelli G, Mainero D, Loro F, Ceron A, Chiesa G, MarchiĂ² G, Brondello L, Rossi L, Favoino E (2006) L’Integrazione tra la digestione anaerobica e il compostaggio. Realizzato in collaborazione con C.R.P.A. e CIC. edn. GDL Digestione Anaerobica

    Google Scholar 

  7. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  Google Scholar 

  8. Pohland FG, Ghosh S (1971) Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett 1(4):255–266

    Article  Google Scholar 

  9. Hammad M, Badarneh D, Tahboub K (1999) Evaluating variable organic waste to produce methane. Energy Convers Manag 40(13):1463–1475

    Article  Google Scholar 

  10. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    Article  Google Scholar 

  11. McCarty PL, McKinney RE (1961) Salt toxicity in anaerobic digestion. J Water Pollut Control Federation 33(4):399–415

    Google Scholar 

  12. Kelleher BP, Leahy JJ, Henihan AM, O’Dwyer TF, Sutton D, Leahy MJ (2002) Advances in poultry litter disposal technology-a review. Bioresour Technol 83(1):27–36

    Article  Google Scholar 

  13. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1 (ADM1), IWA task group for mathematical modelling of anaerobic digestion processes, vol 13. IWA Publishing, London

    Google Scholar 

  14. LĂ¼bken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41(18):4085–4096

    Article  Google Scholar 

  15. Møller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26(5):485–495

    Article  Google Scholar 

  16. PraĂŸl H Rechtliche (2005) wirtschaftliche und technische Voraussetzungen in Ă–sterreich. In: Biogas-netzeinspeisung, Wien. Bundesministerium fĂ¼r Verkehr,Innovation und Technologie

    Google Scholar 

  17. Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Convers Manag 43(1):63–75

    Article  Google Scholar 

  18. Schieder D, Quicker P, Schneider R, Winter H, Prechtl S, Faulstich M (2003) Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation. Water Sci Technol 48:209–212

    Google Scholar 

  19. Henshaw P, Medlar D, McEwen J (1999) Selection of a support medium for a fixed-film green sulphur bacteria reactor. Water Res 33(14):3107–3110

    Article  Google Scholar 

  20. Wani AH, Lau AK, Branion RMR (1999) Biofiltration control of pulping odors-hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species. J Chem Technol Biotechnol 74(1):9–16

    Article  Google Scholar 

  21. Kim BW, Chang HN, Kim IK, Lee KS (1992) Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor. Biotechnol Bioeng 40(5):583–592

    Article  Google Scholar 

  22. PraĂŸl H (2008) Biogas purification and assessment of the natural gas grid in Southern and Eastern Europe, vol BiG > East (EIE/07/214). Gerhard Agrinz GmbH, Leibnitz, Austria

    Google Scholar 

  23. Reith JH, Wijffels RH, Barten H (2005) Bio-methane and bio-hydrogen. Status and perspectives of biological methane and hydrogen production. Dutch biological hydrogen foundation, c/o Energy research Centre of The Netherlands ECN, Unit Biomass

    Google Scholar 

  24. Brentner LB, Peccia J, Zimmerman JB (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44(7):2243–2254

    Article  Google Scholar 

  25. James BD, Baum GN, Perez J, Baum KN (2009) Technoeconomic boundary analysis of biological pathways to hydrogen production. US Department of Energy (DoE)

    Google Scholar 

  26. APAT (2005) Anaerobic digestion of organic fraction of municipal solid waste manuals and guide lines

    Google Scholar 

  27. CITEC (2000) Linee guida del Citec. Linee guida per la progettazione, realizzazione e gestione degli impianti a tecnologia complessa per lo smaltimento dei rifiuti urbani (trans: Magagni A)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Massi, E. (2012). Anaerobic Digestion. In: Fuel Cells in the Waste-to-Energy Chain. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2369-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2369-9_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2368-2

  • Online ISBN: 978-1-4471-2369-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics