Skip to main content

Effects of Metabolic Syndrome on Atherosclerosis in Childhood

  • Chapter
  • First Online:
Pediatric Metabolic Syndrome

Abstract

Atherosclerosis is a chronic disease of the arterial wall that starts in childhood but does not usually manifest clinically until adulthood. Its progression depends on several risk factors, most of which are components of metabolic syndrome. In this chapter, we summarize the evidence of pediatric onset of atherosclerosis and discuss its pathogenesis. We also review the effects of various components of metabolic syndrome on the development of atherosclerosis and the strategies for stratifying and reducing the risk of atherosclerosis. A substantial amount of data confirms the early initiation of atherosclerosis. Therefore, earlier efforts to identify, prevent, and treat metabolic syndrome may improve the quality and length of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. The top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en/index.html. Updated June 2011. Accessed 17 Sept 2011.

  2. Kannel WB, Dawber TR. Atherosclerosis as a pediatric problem. J Pediatr. 1972;80(4):544–54.

    Article  PubMed  CAS  Google Scholar 

  3. Holman RL. Atherosclerosis—a pediatric nutrition problem? Am J Clin Nutr. 1961;9:565–9.

    PubMed  CAS  Google Scholar 

  4. Napoli C, Glass CK, Witztum JL, Deutsch R, D’Armiento FP, Palinski W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of early lesions in children (FELIC) study. Lancet. 1999;354(9186):1234–41.

    Article  PubMed  CAS  Google Scholar 

  5. Messiah SE, Arheart KL, Lipshultz SE, Miller TL. Prevalence of the metabolic syndrome in US youth. In: Bagchi D, editor. Global perspectives on childhood obesity: current status, consequences and prevention. San Diego, CA: Academic Press, an Imprint of Elsevier; 2010.

    Google Scholar 

  6. Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults (the Framingham Heart Study). Am J Cardiol. 1987;59(14):91G–4.

    Article  PubMed  CAS  Google Scholar 

  7. Chambless LE, Folsom AR, Sharrett AR, et al. Coronary heart disease risk prediction in the atherosclerosis risk in communities (ARIC) study. J Clin Epidemiol. 2003;56(9):880–90.

    Article  PubMed  Google Scholar 

  8. Rodriguez-Colon SM, Mo J, Duan Y, et al. Metabolic syndrome clusters and the risk of incident stroke: the atherosclerosis risk in communities (ARIC) study. Stroke. 2009;40(1):200–5.

    Article  PubMed  Google Scholar 

  9. Kasai T, Miyauchi K, Kubota N, et al. The relationship between the metabolic syndrome defined by various criteria and the extent of coronary artery disease. Atherosclerosis. 2008;197(2):944–50.

    Article  PubMed  CAS  Google Scholar 

  10. Wang JJ, Li HB, Kinnunen L, et al. How well does the metabolic syndrome defined by five definitions predict incident diabetes and incident coronary heart disease in a Chinese population? Atherosclerosis. 2007;192(1):161–8.

    Article  PubMed  CAS  Google Scholar 

  11. Skilton MR, Moulin P, Serusclat A, Nony P, Bonnet F. A comparison of the NCEP-ATPIII, IDF and AHA/NHLBI metabolic syndrome definitions with relation to early carotid atherosclerosis in subjects with hypercholesterolemia or at risk of CVD: evidence for sex-specific differences. Atherosclerosis. 2007;190(2):416–22.

    Article  PubMed  CAS  Google Scholar 

  12. Magnussen CG, Koskinen J, Chen W, et al. Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation. 2010;122(16):1604–11.

    Article  PubMed  Google Scholar 

  13. Morrison JA, Friedman LA, Wang P, Glueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr. 2008;152(2):201–6.

    Article  PubMed  CAS  Google Scholar 

  14. Enos Jr WF, Beyer JC, Holmes RH. Pathogenesis of coronary disease in American soldiers killed in Korea. J Am Med Assoc. 1955;158(11):912–4.

    Article  PubMed  Google Scholar 

  15. Enos WF, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc. 1953;152(12):1090–3.

    Article  PubMed  CAS  Google Scholar 

  16. Magnussen CG, Venn A, Thomson R, et al. The association of pediatric low- and high-density lipoprotein cholesterol dyslipidemia classifications and change in dyslipidemia status with carotid intima-media thickness in adulthood evidence from the Cardiovascular Risk in Young Finns Study, the Bogalusa Heart Study, and the CDAH (Childhood Determinants of Adult Health) Study. J Am Coll Cardiol. 2009;53(10):860–9.

    Article  PubMed  CAS  Google Scholar 

  17. Magnussen CG, Raitakari OT, Thomson R, et al. Utility of currently recommended pediatric dyslipidemia classifications in predicting dyslipidemia in adulthood: evidence from the Childhood Determinants of Adult Health (CDAH) Study, Cardiovascular Risk in Young Finns Study, and Bogalusa Heart Study. Circulation. 2008;117(1):32–42.

    Article  PubMed  Google Scholar 

  18. Chen W, Srinivasan SR, Li S, Xu J, Berenson GS. Metabolic syndrome variables at low levels in childhood are beneficially associated with adulthood cardiovascular risk: the Bogalusa Heart Study. Diabetes Care. 2005;28(1):126–31.

    Article  PubMed  Google Scholar 

  19. Li X, Li S, Ulusoy E, Chen W, Srinivasan SR, Berenson GS. Childhood adiposity as a predictor of cardiac mass in adulthood: the Bogalusa Heart Study. Circulation. 2004;110(22):3488–92.

    Article  PubMed  Google Scholar 

  20. Li S, Chen W, Srinivasan SR, et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA. 2003;290(17):2271–6.

    Article  PubMed  CAS  Google Scholar 

  21. Nicklas TA, von Duvillard SP, Berenson GS. Tracking of serum lipids and lipoproteins from childhood to dyslipidemia in adults: the Bogalusa Heart Study. Int J Sports Med. 2002;23 Suppl 1:S39–43.

    Article  PubMed  Google Scholar 

  22. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics. 1999;103(6 Pt 1):1175–82.

    Article  PubMed  CAS  Google Scholar 

  23. Berenson GS, Srinivasan SR, Bao W, Newman 3rd WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650–6.

    Article  PubMed  CAS  Google Scholar 

  24. Berenson GS, Srinivasan SR, Bao W. Precursors of cardiovascular risk in young adults from a biracial (black-white) population: the Bogalusa Heart Study. Ann N Y Acad Sci. 1997;817:189–98.

    Article  PubMed  CAS  Google Scholar 

  25. Bao W, Srinivasan SR, Wattigney WA, Bao W, Berenson GS. Usefulness of childhood low-density lipoprotein cholesterol level in predicting adult dyslipidemia and other cardiovascular risks. The Bogalusa Heart Study. Arch Intern Med. 1996;156(12):1315–20.

    Article  PubMed  CAS  Google Scholar 

  26. Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation. 1995;91(9):2400–6.

    PubMed  CAS  Google Scholar 

  27. Webber LS, Srinivasan SR, Wattigney WA, Berenson GS. Tracking of serum lipids and lipoproteins from childhood to adulthood. The Bogalusa Heart Study. Am J Epidemiol. 1991;133(9):884–99.

    PubMed  CAS  Google Scholar 

  28. Dennison BA, Kikuchi DA, Srinivasan SR, Webber LS, Berenson GS. Serum total cholesterol screening for the detection of elevated low-density lipoprotein in children and adolescents: the Bogalusa Heart Study. Pediatrics. 1990;85(4):472–9.

    PubMed  CAS  Google Scholar 

  29. Berenson GS, Foster TA, Frank GC, et al. Cardiovascular disease risk factor variables at the preschool age. The Bogalusa Heart Study. Circulation. 1978;57(3):603–12.

    PubMed  CAS  Google Scholar 

  30. Frerichs RR, Srinivasan SR, Webber LS, Berenson GR. Serum cholesterol and triglyceride levels in 3,446 children from a biracial community: the Bogalusa Heart Study. Circulation. 1976;54(2):302–9.

    PubMed  CAS  Google Scholar 

  31. Juonala M, Magnussen CG, Venn A, et al. Influence of age on associations between childhood risk factors and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Bogalusa Heart Study, and the Muscatine Study for the International Childhood Cardiovascular Cohort (i3C) Consortium. Circulation. 2010;122(24):2514–20.

    Article  PubMed  Google Scholar 

  32. McGill Jr HC, McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation. 2008;117(9):1216–27.

    Article  PubMed  Google Scholar 

  33. Zieske AW, McMahan CA, McGill Jr HC, et al. Smoking is associated with advanced coronary atherosclerosis in youth. Atherosclerosis. 2005;180(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  34. McGill Jr HC, McMahan CA, Herderick EE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712–8.

    Article  PubMed  Google Scholar 

  35. McGill Jr HC, McMahan CA, Zieske AW, Malcom GT, Tracy RE, Strong JP. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation. 2001;103(11):1546–50.

    PubMed  CAS  Google Scholar 

  36. McGill Jr HC, McMahan CA, Herderick EE, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 2000;20(3):836–45.

    Article  PubMed  Google Scholar 

  37. Rainwater DL, McMahan CA, Malcom GT, et al. Lipid and apolipoprotein predictors of atherosclerosis in youth: apolipoprotein concentrations do not materially improve prediction of arterial lesions in PDAY subjects. The PDAY Research Group. Arterioscler Thromb Vasc Biol. 1999;19(3):753–61.

    Article  PubMed  CAS  Google Scholar 

  38. McGill Jr HC, McMahan CA, Tracy RE, et al. Relation of a postmortem renal index of hypertension to atherosclerosis and coronary artery size in young men and women. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1998;18(7):1108–18.

    Article  PubMed  Google Scholar 

  39. McGill Jr HC, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Effects of serum lipoproteins and smoking on atherosclerosis in young men and women. The PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 1997;17(1):95–106.

    Article  PubMed  Google Scholar 

  40. McGill Jr HC, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995;15(4):431–40.

    Article  PubMed  Google Scholar 

  41. McGill Jr HC, Strong JP, Tracy RE, McMahan CA, Oalmann MC. Relation of a postmortem renal index of hypertension to atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol. 1995;15(12):2222–8.

    Article  PubMed  Google Scholar 

  42. Klotz O. Fatty streaks in the intima of arteries. J Pathol Bacteriol. 1911;16(1):211–20.

    Article  Google Scholar 

  43. Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281(8):727–35.

    Article  PubMed  CAS  Google Scholar 

  44. Holman RL, McGill Jr HC, Strong JP, Geer JC. The natural history of atherosclerosis: the early aortic lesions as seen in New Orleans in the middle of the 20th century. Am J Pathol. 1958;34(2):209–35.

    PubMed  CAS  Google Scholar 

  45. Lauer RM, Connor WE, Leaverton PE, Reiter MA, Clarke WR. Coronary heart disease risk factors in school children: the Muscatine study. J Pediatr. 1975;86(5):697–706.

    Article  PubMed  CAS  Google Scholar 

  46. Raitakari OT, Juonala M, Kahonen M, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290(17):2277–83.

    Article  PubMed  CAS  Google Scholar 

  47. Libby P. The vascular biology of atherosclerosis. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease—A textbook of cardiovascular medicine. Philadelphia, PA: Saunders Elsevier; 2011. p. 897.

    Google Scholar 

  48. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329.

    Article  PubMed  CAS  Google Scholar 

  49. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.

    Article  PubMed  CAS  Google Scholar 

  50. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Article  PubMed  CAS  Google Scholar 

  51. Gau GT, Wright RS. Pathophysiology, diagnosis, and management of dyslipidemia. Curr Probl Cardiol. 2006;31(7):445–86.

    Article  PubMed  Google Scholar 

  52. Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation. 1990;82(3 Suppl):II38–46.

    PubMed  CAS  Google Scholar 

  53. Libby P. Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol. 2006;98(12A):3Q–9.

    Article  PubMed  CAS  Google Scholar 

  54. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol. 1995;15(9):1512–31.

    Article  PubMed  CAS  Google Scholar 

  55. Robertson WB, Geer JC, Strong JP, McGill Jr HC. The fate of the fatty streak. Exp Mol Pathol. 1963;52 Suppl 1:28–39.

    PubMed  Google Scholar 

  56. Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis. 1989;9(1 Suppl):I19–32.

    PubMed  CAS  Google Scholar 

  57. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49(25):2379–93.

    Article  PubMed  CAS  Google Scholar 

  58. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  PubMed  CAS  Google Scholar 

  59. Manson JE, Colditz GA, Stampfer MJ, et al. A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med. 1990;322(13):882–9.

    Article  PubMed  CAS  Google Scholar 

  60. Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002;26(6):754–64.

    Article  PubMed  CAS  Google Scholar 

  61. Manson JE, Willett WC, Stampfer MJ, et al. Body weight and mortality among women. N Engl J Med. 1995;333(11):677–85.

    Article  PubMed  CAS  Google Scholar 

  62. Willett WC, Manson JE, Stampfer MJ, et al. Weight, weight change, and coronary heart disease in women. Risk within the ‘normal’ weight range. JAMA. 1995;273(6):461–5.

    Article  PubMed  CAS  Google Scholar 

  63. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350–5.

    Article  PubMed  CAS  Google Scholar 

  64. McGill Jr HC, McMahan CA, Zieske AW, et al. Association of coronary heart disease risk factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000;102(4):374–9.

    PubMed  Google Scholar 

  65. The NS, Suchindran C, North KE, Popkin BM, Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. JAMA. 2010;304(18):2042–7.

    Article  PubMed  CAS  Google Scholar 

  66. Steinberger J, Moran A, Hong CP, Jacobs Jr DR, Sinaiko AR. Adiposity in childhood predicts obesity and insulin resistance in young adulthood. J Pediatr. 2001;138(4):469–73.

    Article  PubMed  CAS  Google Scholar 

  67. Sun SS, Liang R, Huang TT, et al. Childhood obesity predicts adult metabolic syndrome: the Fels Longitudinal Study. J Pediatr. 2008;152(2):191–200.

    Article  PubMed  CAS  Google Scholar 

  68. Irace C, Scavelli F, Carallo C, Serra R, Cortese C, Gnasso A. Body mass index, metabolic syndrome and carotid atherosclerosis. Coron Artery Dis. 2009;20(2):94–9.

    Article  PubMed  Google Scholar 

  69. Shalitin S, Phillip M. Frequency of cardiovascular risk factors in obese children and adolescents referred to a tertiary care center in Israel. Horm Res. 2008;69(3):152–9.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang CX, Tse LA, Deng XQ, Jiang ZQ. Cardiovascular risk factors in overweight and obese Chinese children: a comparison of weight-for-height index and BMI as the screening criterion. Eur J Nutr. 2008;47(5):244–50.

    Article  PubMed  CAS  Google Scholar 

  71. Messiah SE, Arheart KL, Luke B, Lipshultz SE, Miller TL. Relationship between body mass index and metabolic syndrome risk factors among US 8- to 14-year-olds, 1999 to 2002. J Pediatr. 2008;153(2):215–21.

    Article  PubMed  Google Scholar 

  72. Messiah SE, Arheart KL, Lipshultz SE, Miller TL. Body mass index, waist circumference, and cardiovascular risk factors in adolescents. J Pediatr. 2008;153(6):845–50.

    Article  PubMed  Google Scholar 

  73. Rocchini AP, Moorehead C, Katch V, Key J, Finta KM. Forearm resistance vessel abnormalities and insulin resistance in obese adolescents. Hypertension. 1992;19(6 Pt 2):615–20.

    PubMed  CAS  Google Scholar 

  74. Virdis A, Ghiadoni L, Masi S, et al. Obesity in the childhood: a link to adult hypertension. Curr Pharm Des. 2009;15(10):1063–71.

    Article  PubMed  CAS  Google Scholar 

  75. Oeffinger KC, Mertens AC, Sklar CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2003;21(7):1359–65.

    Article  PubMed  Google Scholar 

  76. Miller TL, Lipsitz SR, Lopez-Mitnik G, et al. Characteristics and determinants of adiposity in pediatric cancer survivors. Cancer Epidemiol Biomarkers Prev. 2010;19(8):2013–22.

    Article  PubMed  Google Scholar 

  77. Strickman-Stein N, Gervais MD, Ludwig DA, Messiah SE, Lipshultz SE, Miller TL. Body mass index as a function of length of United States residency among Haitian immigrant children. Ethn Dis. 2010;20(1):22–8.

    PubMed  Google Scholar 

  78. Su HY, Sheu WH, Chin HM, Jeng CY, Chen YD, Reaven GM. Effect of weight loss on blood pressure and insulin resistance in normotensive and hypertensive obese individuals. Am J Hypertens. 1995;8(11):1067–71.

    Article  PubMed  CAS  Google Scholar 

  79. de la Cruz-Munoz N, Messiah SE, Arheart KL, Lopez-Mitnik G, Lipshultz SE, Livingstone A. Bariatric surgery significantly decreases the prevalence of type 2 diabetes mellitus and pre-diabetes among morbidly obese multiethnic adults: long-term results. J Am Coll Surg. 2011;212(4):505–11; discussion 512–3.

    Article  PubMed  Google Scholar 

  80. Alvarez JA, Miller TL, Messiah SE, Lipshultz SE. Chapter 32: Lipid abnormalities. In: McInerny TK, Adams HM, Campbell DE, Kamat DM, Kelleher KJ, editors. American academy of pediatrics textbook of pediatric care. 2nd ed. Oak Grove Village: American Academy of Pediatrics; 2009.

    Google Scholar 

  81. Alvarez JA, Miller TL, Starc TJ, McGrath K, Lipshultz SE. Chapter 32: Preventive cardiology. In: McInerny TK, Adams HM, Campbell DE, Kamat DM, Kelleher KJ, editors. American Academy of Pediatrics textbook of pediatric care. Oak Grove Village, IL: American Academy of Pediatrics; 2008. p. 2935.

    Google Scholar 

  82. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  83. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

    Article  PubMed  CAS  Google Scholar 

  84. Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9(3):237–52.

    PubMed  Google Scholar 

  85. Grundy SM, Brewer Jr HB, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.

    Article  PubMed  Google Scholar 

  86. Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents. Lancet. 2007;369(9579):2059–61.

    Article  PubMed  Google Scholar 

  87. Gordon DJ, Rifkind BM. High-density lipoprotein—the clinical implications of recent studies. N Engl J Med. 1989;321(19):1311–6.

    Article  PubMed  CAS  Google Scholar 

  88. Li C, Ford ES, McBride PE, Kwiterovich PO, McCrindle BW, Gidding SS. Non-high-density lipoprotein cholesterol concentration is associated with the metabolic syndrome among US youth aged 12–19 years. J Pediatr. 2011;158(2):201–7.

    Article  PubMed  CAS  Google Scholar 

  89. McMahan CA, Gidding SS, Fayad ZA, et al. Risk scores predict atherosclerotic lesions in young people. Arch Intern Med. 2005;165(8):883–90.

    Article  PubMed  Google Scholar 

  90. Friedman LA, Morrison JA, Daniels SR, McCarthy WF, Sprecher DL. Sensitivity and specificity of pediatric lipid determinations for adult lipid status: findings from the Princeton Lipid Research Clinics Prevalence Program Follow-up Study. Pediatrics. 2006;118(1):165–72.

    Article  PubMed  Google Scholar 

  91. Porkka KV, Viikari JS, Taimela S, Dahl M, Akerblom HK. Tracking and predictiveness of serum lipid and lipoprotein measurements in childhood: a 12-year follow-up. The Cardiovascular Risk in Young Finns Study. Am J Epidemiol. 1994;140(12):1096–110.

    PubMed  CAS  Google Scholar 

  92. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232(4746):34–47.

    Article  PubMed  CAS  Google Scholar 

  93. Scientific Steering Committee on behalf of the Simon Broome Register Group. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Atherosclerosis. 1999;142(1):105–12.

    Google Scholar 

  94. Kolovou GD, Anagnostopoulou KK, Kostakou PM, Bilianou H, Mikhailidis DP. Primary and secondary hypertriglyceridaemia. Curr Drug Targets. 2009;10(4):336–43.

    Article  PubMed  CAS  Google Scholar 

  95. Castelli WP. Epidemiology of triglycerides: a view from Framingham. Am J Cardiol. 1992;70(19):3H–9.

    Article  PubMed  CAS  Google Scholar 

  96. Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb. 1992;12(11):1336–45.

    Article  PubMed  CAS  Google Scholar 

  97. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46(6):733–49.

    Article  PubMed  Google Scholar 

  98. Le NA, Walter MF. The role of hypertriglyceridemia in atherosclerosis. Curr Atheroscler Rep. 2007;9(2):110–5.

    Article  PubMed  CAS  Google Scholar 

  99. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14(11):1767–74.

    Article  PubMed  CAS  Google Scholar 

  100. Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation. 2004;109(8):1022–8.

    Article  PubMed  CAS  Google Scholar 

  101. Kawakami A, Tanaka A, Nakajima K, Shimokado K, Yoshida M. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ Res. 2002;91(3):263–71.

    Article  PubMed  CAS  Google Scholar 

  102. Kawakami A, Tani M, Chiba T, et al. Pitavastatin inhibits remnant lipoprotein-induced macrophage foam cell formation through ApoB48 receptor-dependent mechanism. Arterioscler Thromb Vasc Biol. 2005;25(2):424–9.

    Article  PubMed  CAS  Google Scholar 

  103. Playford DA, Watts GF, Best JD, Burke V. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol. 2002;90(11):1254–7.

    Article  PubMed  CAS  Google Scholar 

  104. Zhao SP, Liu L, Gao M, Zhou QC, Li YL, Xia B. Impairment of endothelial function after a high-fat meal in patients with coronary artery disease. Coron Artery Dis. 2001;12(7):561–5.

    Article  PubMed  CAS  Google Scholar 

  105. Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4.

    Article  PubMed  CAS  Google Scholar 

  106. Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick park heart study. Lancet. 1986;2(8506):533–7.

    Article  PubMed  CAS  Google Scholar 

  107. Simpson HC, Mann JI, Meade TW, Chakrabarti R, Stirling Y, Woolf L. Hypertriglyceridaemia and hypercoagulability. Lancet. 1983;1(8328):786–90.

    Article  PubMed  CAS  Google Scholar 

  108. Avellone G. Fibrinolysis in hypertriglyceridaemic subjects in response to venous occlusion. Blood Coagul Fibrinolysis. 1993;4(3):429–33.

    Article  PubMed  CAS  Google Scholar 

  109. de Man FH, Nieuwland R, van der Laarse A, et al. Activated platelets in patients with severe hypertriglyceridemia: effects of triglyceride-lowering therapy. Atherosclerosis. 2000;152(2):407–14.

    Article  PubMed  Google Scholar 

  110. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation. 1992;85(1):37–45.

    PubMed  CAS  Google Scholar 

  111. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.

    Article  Google Scholar 

  112. Gillman MW, Rich-Edwards JW, Rifas-Shiman SL, Lieberman ES, Kleinman KP, Lipshultz SE. Maternal age and other predictors of newborn blood pressure. J Pediatr. 2004;144(2):240–5.

    Article  PubMed  Google Scholar 

  113. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171–80.

    Article  PubMed  Google Scholar 

  114. Cook NR, Gillman MW, Rosner BA, Taylor JO, Hennekens CH. Combining annual blood pressure measurements in childhood to improve prediction of young adult blood pressure. Stat Med. 2000;19(19):2625–40.

    Article  PubMed  CAS  Google Scholar 

  115. Zinner SH, Rosner B, Oh W, Kass EH. Significance of blood pressure in infancy. Familial aggregation and predictive effect on later blood pressure. Hypertension. 1985;7(3 Pt 1):411–6.

    PubMed  CAS  Google Scholar 

  116. Oyama N, Gona P, Salton CJ, et al. Differential impact of age, sex, and hypertension on aortic atherosclerosis: the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2008; 28(1):155–9.

    Article  PubMed  CAS  Google Scholar 

  117. Sokol KC, Messiah SE, Buzzard CJ, Lipshultz SE. Chapter 191: High blood pressure in infants, children, and adolescents. In: McInerny TK, Adams HM, Campbell DE, Kamat DM, Kelleher KJ, editors. American Academy of Pediatrics textbook of pediatric care. Oak Grove Village, IL: American Academy of Pediatrics; 2008.

    Google Scholar 

  118. Stalder M, Pometta D, Suenram A. Relationship between plasma insulin levels and high density lipoprotein cholesterol levels in healthy men. Diabetologia. 1981;21(6):544–8.

    PubMed  CAS  Google Scholar 

  119. Enderle MD, Benda N, Schmuelling RM, Haering HU, Pfohl M. Preserved endothelial function in IDDM patients, but not in NIDDM patients, compared with healthy subjects. Diabetes Care. 1998;21(2):271–7.

    Article  PubMed  CAS  Google Scholar 

  120. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3 T3-L1 adipocytes. Diabetes. 1998;47(10):1562–9.

    Article  PubMed  CAS  Google Scholar 

  121. Sinaiko AR, Jacobs Jr DR, Steinberger J, et al. Insulin resistance syndrome in childhood: associations of the euglycemic insulin clamp and fasting insulin with fatness and other risk factors. J Pediatr. 2001;139(5):700–7.

    Article  PubMed  CAS  Google Scholar 

  122. Manzi S, Meilahn EN, Rairie JE, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol. 1997;145(5):408–15.

    PubMed  CAS  Google Scholar 

  123. Gazarian M, Feldman BM, Benson LN, Gilday DL, Laxer RM, Silverman ED. Assessment of myocardial perfusion and function in childhood systemic lupus erythematosus. J Pediatr. 1998;132(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  124. Kumeda Y, Inaba M, Goto H, et al. Increased thickness of the arterial intima-media detected by ultrasonography in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(6):1489–97.

    Article  PubMed  Google Scholar 

  125. Park KW. The antiphospholipid syndrome. Int Anesthesiol Clin. 2004;42(3):45–57.

    Article  PubMed  Google Scholar 

  126. McEntegart A, Capell HA, Creran D, Rumley A, Woodward M, Lowe GD. Cardiovascular risk factors, including thrombotic variables, in a population with rheumatoid arthritis. Rheumatology (Oxford). 2001;40(6):640–4.

    Article  CAS  Google Scholar 

  127. Borba EF, Santos RD, Bonfa E, et al. Lipoprotein(a) levels in systemic lupus erythematosus. J Rheumatol. 1994;21(2):220–3.

    PubMed  CAS  Google Scholar 

  128. Smith SC, Jr Anderson JL, Cannon RO, et al. CDC/AHA workshop on markers of inflammation and cardiovascular disease: application to clinical and public health practice: report from the Clinical Practice Discussion Group. Circulation. 2004;110(25):e550–3.

    Article  PubMed  Google Scholar 

  129. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.

    Article  PubMed  CAS  Google Scholar 

  130. Mangge H, Hubmann H, Pilz S, Schauenstein K, Renner W, Marz W. Beyond cholesterol–inflammatory cytokines, the key mediators in atherosclerosis. Clin Chem Lab Med. 2004;42(5):467–74.

    PubMed  CAS  Google Scholar 

  131. Balagopal PB, de Ferranti SD, Cook S, et al. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation. 2011;123(23):2749–69.

    Article  PubMed  Google Scholar 

  132. Winer JC, Zern TL, Taksali SE, et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab. 2006;91(11):4415–23.

    Article  PubMed  CAS  Google Scholar 

  133. Pilz S, Horejsi R, Moller R, et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin. J Clin Endocrinol Metab. 2005;90(8):4792–6.

    Article  PubMed  CAS  Google Scholar 

  134. Arnaiz P, Acevedo M, Barja S, et al. Adiponectin levels, cardiometabolic risk factors and markers of subclinical atherosclerosis in children. Int J Cardiol. 2010;138(2):138–44.

    Article  PubMed  Google Scholar 

  135. Chu NF, Shen MH, Wu DM, Lai CJ. Relationship between plasma adiponectin levels and metabolic risk profiles in Taiwanese children. Obes Res. 2005;13(11):2014–20.

    Article  PubMed  CAS  Google Scholar 

  136. Beauloye V, Zech F, Tran HT, Clapuyt P, Maes M, Brichard SM. Determinants of early ­atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab. 2007; 92(8):3025–32.

    Article  PubMed  CAS  Google Scholar 

  137. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  PubMed  CAS  Google Scholar 

  138. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84.

    Article  PubMed  CAS  Google Scholar 

  139. Balagopal PB, Gidding SS, Buckloh LM, et al. Changes in circulating satiety hormones in obese children: a randomized controlled physical activity-based intervention study. Obesity (Silver Spring). 2010;18(9):1747–53.

    Article  CAS  Google Scholar 

  140. Feldman J, Shenker IR, Etzel RA, et al. Passive smoking alters lipid profiles in adolescents. Pediatrics. 1991;88(2):259–64.

    PubMed  CAS  Google Scholar 

  141. Neufeld EJ, Mietus-Snyder M, Beiser AS, Baker AL, Newburger JW. Passive cigarette smoking and reduced HDL cholesterol levels in children with high-risk lipid profiles. Circulation. 1997;96(5):1403–7.

    PubMed  CAS  Google Scholar 

  142. Messiah SE, Miller TL, Lipshultz SE, Bandstra ES. Potential latent effects of prenatal cocaine exposure on growth and the risk of cardiovascular and metabolic disease in childhood. Prog Pediatr Cardiol. 2011;31(1):59–65.

    Article  PubMed  Google Scholar 

  143. Gillman MW, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Lipshultz SE. Maternal calcium intake and offspring blood pressure. Circulation. 2004;110(14):1990–5.

    Article  PubMed  CAS  Google Scholar 

  144. American Academy of Pediatrics. National Cholesterol Education Program: Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics. 1992;89(3 Pt 2):525–84.

    Google Scholar 

  145. Kavey RE, Allada V, Daniels SR, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 2006;114(24):2710–38.

    Article  PubMed  Google Scholar 

  146. American Academy of Pediatrics. Cardiovascular risk reduction in high-risk pediatric populations. Pediatrics. 2007;119(3):618–21.

    Article  Google Scholar 

  147. Dennison BA, Kikuchi DA, Srinivasan SR, Webber LS, Berenson GS. Parental history of cardiovascular disease as an indication for screening for lipoprotein abnormalities in children. J Pediatr. 1989;115(2):186–94.

    Article  PubMed  CAS  Google Scholar 

  148. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285(19):2486–97

    Article  Google Scholar 

  149. National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 2011;128(Suppl 5):S213–56.

    Article  Google Scholar 

  150. Lipshultz SE, Somers MJ, Lipsitz SR, Colan SD, Jabs K, Rifai N. Serum cardiac troponin and subclinical cardiac status in pediatric chronic renal failure. Pediatrics. 2003;112(1 Pt 1):79–86.

    Article  PubMed  Google Scholar 

  151. Moran AM, Lipshultz SE, Rifai N, et al. Non-invasive assessment of rejection in pediatric transplant patients: serologic and echocardiographic prediction of biopsy-proven myocardial rejection. J Heart Lung Transplant. 2000;19(8):756–64.

    Article  PubMed  CAS  Google Scholar 

  152. Newburger JW, Harmon WG, Lipshultz SE. Kawasaki disease. In: Burg FD, Ingelfinger JR, Polin RA, Gershon AA, editors. Current pediatric therapy. 18th ed. Philadelphia: Saunders Elsevier; 2006. p. 497.

    Google Scholar 

  153. Bonow RO, Mitch WE, Nesto RW, et al. Prevention conference VI: diabetes and cardiovascular disease: Writing Group V: management of cardiovascular-renal complications. Circulation. 2002;105(18):e159–64.

    Article  PubMed  Google Scholar 

  154. Fisher SD, Miller TL, Lipshultz SE. Impact of HIV and highly active antiretroviral therapy on leukocyte adhesion molecules, arterial inflammation, dyslipidemia, and atherosclerosis. Atherosclerosis. 2006;185(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  155. Fisher SD, Kanda BS, Miller TL, Lipshultz SE. Cardiovascular disease and therapeutic drug related cardiovascular consequences in HIV infected patients. Am J Cardiovasc Drugs. 2011;11(6):383–94.

    Article  PubMed  CAS  Google Scholar 

  156. Miller TL, Grant YT, Almeida DN, Sharma T, Lipshultz SE. Cardiometabolic disease in human immunodeficiency virus-infected children. J Cardiometab Syndr. 2008;3(2):98–105.

    Article  PubMed  Google Scholar 

  157. Sharma TS, Messiah S, Fisher S, Miller TL, Lipshultz SE. Accelerated cardiovascular disease and myocardial infarction risk in patients with the human immunodeficiency virus. J Cardiometab Syndr. 2008;3(2):93–7.

    Article  PubMed  Google Scholar 

  158. Miller TL, Orav EJ, Lipshultz SE, et al. Risk factors for cardiovascular disease in children infected with human immunodeficiency virus-1. J Pediatr. 2008;153(4):491–7.

    Article  PubMed  Google Scholar 

  159. Grinspoon SK, Grunfeld C, Kotler DP, et al. State of the science conference: initiative to decrease cardiovascular risk and increase quality of care for patients living with HIV/AIDS: executive summary. Circulation. 2008;118(2):198–210.

    Article  PubMed  Google Scholar 

  160. Miller TL, Somarriba G, Orav EJ, et al. Biomarkers of vascular dysfunction in children infected with human immunodeficiency virus-1. J Acquir Immune Defic Syndr. 2010;55(2):182–8.

    Article  PubMed  CAS  Google Scholar 

  161. Perez-Atayde AR, Kearney DI, Bricker JT, et al. Cardiac, aortic, and pulmonary arteriopathy in HIV-infected children: the Prospective P2C2 HIV Multicenter Study. Pediatr Dev Pathol. 2004;7(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  162. Dube MP, Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation. 2008;118(2):e36–40.

    Article  PubMed  CAS  Google Scholar 

  163. Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28(8):1276–81.

    Article  PubMed  Google Scholar 

  164. Landy DC, Miller TL, Mitnik GL, et al. LV structure, LV function, and serum NT-proBNP in childhood cancer survivors without anthracycline or cardiac radiation exposures. Prog Pediatr Cardiol. 2011;31(2):141–2.

    Article  Google Scholar 

  165. Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol Res Pract. 2011;2011:134679.

    PubMed  Google Scholar 

  166. Trachtenberg BH, Landy DC, Franco VI, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32(3):342–53.

    Article  PubMed  Google Scholar 

  167. Dadlani GH, Gingell RL, Orie JD, et al. Coronary artery calcifications in the long-term follow-up of Kawasaki disease. Am Heart J. 2005;150(5):1016.

    Article  PubMed  CAS  Google Scholar 

  168. Lipshultz SE, Schaechter J, Carrillo A, Sanchez J, Qureshi MY, Messiah SE, Hershorin ER, Wilkinson JD, Miller TL. In debate: can the consequences of universal cholesterol screening during childhood prevent cardiovascular disease and thus reduce long-term health care costs? Pediatr Endocrin Rev. 2012 [in press].

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Lipshultz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Qureshi, M.Y., Messiah, S.E., Miller, T.L., Lipshultz, S.E. (2012). Effects of Metabolic Syndrome on Atherosclerosis in Childhood. In: Lipshultz, S., Messiah, S., Miller, T. (eds) Pediatric Metabolic Syndrome. Springer, London. https://doi.org/10.1007/978-1-4471-2366-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2366-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2365-1

  • Online ISBN: 978-1-4471-2366-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics