Skip to main content

Nutritional Evaluation and Intervention

  • Chapter
  • First Online:
  • 923 Accesses

Abstract

Nutritional surveillance is central to the care of all children because of the national propensity for childhood obesity and metabolic complications. Sound nutritional advice should be given at the earliest times in life, even prenatally, as healthy nutritional practices instituted at an early age are likely to be the most sustainable over the life course. The assessment of body mass index should be a routine part of clinical care and other body composition methods, such as waist circumference and regional skinfolds, and should be employed to ascertain compartmentalization of body fat with a focus on central adiposity. A critical assessment of dietary intake is necessary to identify eating patterns and choices that are amenable to change. The 24-h, multiple-pass food recall method is the most reliable, but all methods are fraught with technical flaws. Biochemical indicators including cardiometabolic risk profile, inflammatory biomarkers, and micronutrient levels, including vitamins D, E, and iron, should be routinely measured. Treatment is aimed primarily at lifestyle modifications that advocate sound nutritional practices with weight loss or weight maintenance in the growing child kept in mind. However, nutritional interventions are unlikely to be effective when instituted in isolation. A multidisciplinary management strategy that addresses nutritional, lifestyle, psychological, and pharmacological approaches is essential to promote the most optimal nutrition to prevent and treat the metabolic syndrome in childhood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cruz ML, Goran MI. The metabolic syndrome in children and adolescents. Curr Diab Rep. 2004;4(1):53–62.

    PubMed  Google Scholar 

  2. Messiah SE, Arheart KL, Luke B, Lipshultz SE, Miller TL. Relationship between body mass index and metabolic syndrome risk factors among US 8- to 14-year-olds, 1999 to 2002. J Pediatr. 2008;153(2):215–21.

    PubMed  Google Scholar 

  3. Weiss R. Childhood metabolic syndrome: must we define it to deal with it? Diabetes Care. 2011;34 Suppl 2:S171–6.

    PubMed  Google Scholar 

  4. Ford ES, Li C. Defining the metabolic syndrome in children and adolescents: will the real definition please stand up? J Pediatr. 2008;152(2):160–4.

    PubMed  Google Scholar 

  5. Hirschler V, Maccallini G, Calcagno M, Aranda C, Jadzinsky M. Waist circumference identifies primary school children with metabolic syndrome abnormalities. Diabetes Technol Ther. 2007;9(2):149–57.

    PubMed  Google Scholar 

  6. He M, Evans A. Are parents aware that their children are overweight or obese? Do they care? Can Fam Phys. 2007;53(9):1493–9.

    Google Scholar 

  7. Kleinman R. Pediatric nutrition handbook; 2009.

    Google Scholar 

  8. Garnett SP, Baur LA, Srinivasan S, Lee JW, Cowell CT. Body mass index and waist circumference in midchildhood and adverse cardiovascular disease risk clustering in adolescence. Am J Clin Nutr. 2007;86(3):549–55.

    PubMed  CAS  Google Scholar 

  9. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, et al. CDC growth charts: United States. Adv Data. 2000;314:1–27.

    PubMed  Google Scholar 

  10. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120 Suppl 4:S164–92.

    PubMed  Google Scholar 

  11. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS. Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 1999;69(2):308–17.

    PubMed  CAS  Google Scholar 

  12. Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr. 2005;164(4):216–22.

    PubMed  Google Scholar 

  13. CDC. NHANES: Anthropometry procedures manual. In: NHANES, editor; 2002.

    Google Scholar 

  14. McDowell MA, Fryar CD, Ogden CL. Anthropometric reference data for children and adults: United States, 1988–1994. Vital and health statistics. Series 11, Data from the national health survey 2009(249):1–68.

    Google Scholar 

  15. Bedogni G, Iughetti L, Ferrari M, Malavolti M, Poli M, Bernasconi S, et al. Sensitivity and specificity of body mass index and skinfold thicknesses in detecting excess adiposity in children aged 8–12 years. Ann Hum Biol. 2003;30(2):132–9.

    PubMed  CAS  Google Scholar 

  16. Goran MI. Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake. Pediatrics. 1998;101(3 Pt 2):505–18.

    PubMed  CAS  Google Scholar 

  17. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60(5):709–23.

    PubMed  CAS  Google Scholar 

  18. Durnin JV, Lonergan ME, Good J, Ewan A. A cross-sectional nutritional and anthropometric study, with an interval of 7 years, on 611 young adolescent schoolchildren. Br J Nutr. 1974;32(1):169–79.

    PubMed  CAS  Google Scholar 

  19. Wickramasinghe VP, Lamabadusuriay SP, Cleghorn GJ, Davies PS. Use of skin-fold thickness in Sri Lankan children: comparison of several prediction equations. Indian J Pediatr. 2008;75(12):1237–42.

    PubMed  Google Scholar 

  20. Skinfolds. In: International Standards for Anthropometric Assessment. Undrdale, Australia: The International Society for the Advancement of Kinanthropometry (ISAK); 2001.

    Google Scholar 

  21. Ward KA, Ashby RL, Roberts SA, Adams JE, Zulf Mughal M. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child. 2007;92(1):53–9.

    PubMed  Google Scholar 

  22. Freedman DS, et al. Classification of body fatness by body mass index‐for‐age categories among children. Arch Pediatric Adolesc Med. 2009;163:805–11.

    Google Scholar 

  23. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densit. 2008;11(1):43–58.

    Google Scholar 

  24. Klibanski A, Adams-Campbell L, Bassford T, Blair S, Boden SD, Dickersin K, Gifford DR, Glasse L, Goldring SR, Hruska K, Johnson SR, McCauley LK, Russell WE. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Google Scholar 

  25. Migliaccio S, Greco EA, Fornari R, Donini LM, Lenzi A. Is obesity in women protective against osteoporosis? Diab Metab Synd Obes. 2011;4:273–82.

    Google Scholar 

  26. Lee Y, Kim M, Choi K, Kim J, Bae W, Kim S, et al. Relationship between inflammation biomarkers, antioxidant vitamins, and bone mineral density in patients with metabolic syndrome. Nutr Res Pract. 2011;5(2):150–6.

    PubMed  CAS  Google Scholar 

  27. Leahy S, O’Neill C, Sohun R, Jakeman P. A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur J Appl Physiol. 2012 Feb;112(2):589–95.

    Google Scholar 

  28. Ashwell M, Cole TJ, Dixon AK. Obesity: new insight into the anthropometric classification of fat distribution shown by computed tomography. Br Med J. 1985;290(6483):1692–4.

    CAS  Google Scholar 

  29. Ross R, Leger L, Morris D, de Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol. 1992;72(2):787–95.

    PubMed  CAS  Google Scholar 

  30. USDA. Automated multiple pass method. In: Service AR, editor; 2005.

    Google Scholar 

  31. McPherson RS, Feaganes JR, Siegler IC. Measurement of dietary intake in the UNC Alumni Heart Study. University of North Carolina. Prev Med. 2000;31(1):56–67.

    PubMed  CAS  Google Scholar 

  32. Maffeis C, Provera S, Filippi L, Sidoti G, Schena S, Pinelli L, et al. Distribution of food intake as a risk factor for childhood obesity. Int J Obes Relat Metab Disord. 2000;24(1):75–80.

    PubMed  CAS  Google Scholar 

  33. Doucet E, St-Pierre S, Almeras N, Tremblay A. Relation between appetite ratings before and after a standard meal and estimates of daily energy intake in obese and reduced obese individuals. Appetite. 2003;40(2):137–43.

    PubMed  Google Scholar 

  34. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S, et al. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol. 2001;154(12):1089–99.

    PubMed  CAS  Google Scholar 

  35. Newby PK, Muller D, Hallfrisch J, Andres R, Tucker KL. Food patterns measured by factor analysis and anthropometric changes in adults. Am J Clin Nutr. 2004;80(2):504–13.

    PubMed  CAS  Google Scholar 

  36. Ledoux TA, Hingle MD, Baranowski T. Relationship of fruit and vegetable intake with adiposity: a systematic review. Obes Rev. 2011;12(5):e143–50.

    PubMed  CAS  Google Scholar 

  37. FAO. Food security. 2006.

    Google Scholar 

  38. Nord M, Andrews, M, Carlson S. Food security in the United States: measuring household food security: USDA; 2008.

    Google Scholar 

  39. Nord M, Coleman-Jensen A, Andrews M, Carlson S. Household food security in the United States, 2009; 2010.

    Google Scholar 

  40. Dietz WH. Does hunger cause obesity? Pediatrics. 1995;95(5):766–7.

    PubMed  CAS  Google Scholar 

  41. Dinour LM, Bergen D, Yeh MC. The food insecurity-obesity paradox: a review of the literature and the role food stamps may play. J Am Diet Assoc. 2007;107(11):1952–61.

    PubMed  Google Scholar 

  42. Eisenmann JC, Gundersen C, Lohman BJ, Garasky S, Stewart SD. Is food insecurity related to overweight and obesity in children and adolescents? A summary of studies, 1995–2009. Obes Rev. 2011;12(5):e73–83.

    PubMed  CAS  Google Scholar 

  43. Reis JP, von Muhlen D, Miller 3rd ER, Michos ED, Appel LJ. Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics. 2009;124(3):e371–9.

    PubMed  Google Scholar 

  44. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    PubMed  CAS  Google Scholar 

  45. Saaddine JB, Fagot-Campagna A, Rolka D, Narayan KM, Geiss L, Eberhardt M, et al. Distribution of HbA(1c) levels for children and young adults in the U.S.: third National Health and Nutrition Examination Survey. Diabetes Care. 2002;25(8):1326–30.

    PubMed  Google Scholar 

  46. Zimmermann MB, Aeberli I. Dietary determinants of subclinical inflammation, dyslipidemia and components of the metabolic syndrome in overweight children: a review. Int J Obes. 2008;32 Suppl 6:S11–8.

    CAS  Google Scholar 

  47. Winer JC, Zern TL, Taksali SE, Dziura J, Cali AM, Wollschlager M, et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metabol. 2006;91(11):4415–23.

    CAS  Google Scholar 

  48. Bush NC, Darnell BE, Oster RA, Goran MI, Gower BA. Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. Diabetes. 2005;54(9):2772–8.

    PubMed  CAS  Google Scholar 

  49. Valle M, Martos R, Gascon F, Canete R, Zafra MA, Morales R. Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab. 2005;31(1):55–62.

    PubMed  CAS  Google Scholar 

  50. Amati L, Marzulli G, Martulli M, Chiloiro M, Jirillo E. Effects of a hypocaloric diet on obesity biomarkers: prevention of low-grade inflammation since childhood. Curr Pharm Des. 2010;16(7):893–7.

    PubMed  CAS  Google Scholar 

  51. Palmieri VO, Grattagliano I, Portincasa P, Palasciano G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J Nutr. 2006;136(12):3022–6.

    PubMed  CAS  Google Scholar 

  52. Nunez-Cordoba JM, Martinez-Gonzalez MA. Antioxidant vitamins and cardiovascular disease. Curr Top Med Chem. 2011;11(14):1861–9.

    PubMed  CAS  Google Scholar 

  53. Botella-Carretero JI, Alvarez-Blasco F, Villafruela JJ, Balsa JA, Vazquez C, Escobar-Morreale HF. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin Nutr. 2007;26(5):573–80.

    PubMed  CAS  Google Scholar 

  54. Nead KG, Halterman JS, Kaczorowski JM, Auinger P, Weitzman M. Overweight children and adolescents: a risk group for iron deficiency. Pediatrics. 2004;114(1):104–8.

    PubMed  Google Scholar 

  55. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112(2):219–30.

    PubMed  CAS  Google Scholar 

  56. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343(1):16–22.

    PubMed  CAS  Google Scholar 

  57. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345(11):790–7.

    PubMed  CAS  Google Scholar 

  58. Platz EA, Willett WC, Colditz GA, Rimm EB, Spiegelman D, Giovannucci E. Proportion of colon cancer risk that might be preventable in a cohort of middle-aged US men. Cancer Causes Control. 2000;11(7):579–88.

    PubMed  CAS  Google Scholar 

  59. Reinehr T, Kleber M, Toschke AM. Lifestyle intervention in obese children is associated with a decrease of the metabolic syndrome prevalence. Atherosclerosis. 2009;207(1):174–80.

    PubMed  CAS  Google Scholar 

  60. Klein S, Sheard NF, Pi-Sunyer X, Daly A, Wylie-Rosett J, Kulkarni K, et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr. 2004;80(2):257–63.

    PubMed  CAS  Google Scholar 

  61. Krebs NF, Jacobson MS. Prevention of pediatric overweight and obesity. Pediatrics. 2003;112(2):424–30.

    PubMed  Google Scholar 

  62. Position of the American Dietetic Association. Individual-, family-, school-, and community-based interventions for pediatric overweight. J Am Diet Assoc. 2006;106(6):925–45.

    Google Scholar 

  63. American Dietetic Association. Childhood overweight evidence analysis project: updated 2006.

    Google Scholar 

  64. Spear BA, Barlow SE, Ervin C, Ludwig DS, Saelens BE, Schetzina KE, et al. Recommendations for treatment of child and adolescent overweight and obesity. Pediatrics. 2007;120 Suppl 4:S254–88.

    PubMed  Google Scholar 

  65. Benjamin RM. Dietary guidelines for Americans, 2010: the cornerstone of nutrition policy. Public Health Rep. 2011;126(3):310–1.

    PubMed  Google Scholar 

  66. Trichopoulou A, Bamia C, Trichopoulos D. Mediterranean diet and survival among patients with coronary heart disease in Greece. Arch Intern Med. 2005;165(8):929–35.

    PubMed  Google Scholar 

  67. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6 Suppl):1402S–6.

    PubMed  CAS  Google Scholar 

  68. Giugliano D, Esposito K. Mediterranean diet and metabolic diseases. Curr Opin Lipidol. 2008;19(1):63–8.

    PubMed  CAS  Google Scholar 

  69. Esposito K, Ciotola M, Giugliano D. Mediterranean diet and the metabolic syndrome. Mol Nutr Food Res. 2007;51(10):1268–74.

    PubMed  CAS  Google Scholar 

  70. Esposito K, Giugliano D. Which Mediterranean diet in the management of metabolic syndrome? Archiv Int Med. 2009;169(11):1076. author reply 1077.

    Google Scholar 

  71. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab Syndr Relat Disord. 2011;9(1):1–12.

    PubMed  Google Scholar 

  72. Giugliano D, Esposito K. Mediterranean diet and cardiovascular health. Ann N Y Acad Sci. 2005;1056:253–60.

    PubMed  CAS  Google Scholar 

  73. Heidemann C, Hoffmann K, Spranger J, Klipstein-Grobusch K, Mohlig M, Pfeiffer AF, et al. A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study cohort. Diabetologia. 2005;48(6):1126–34.

    PubMed  CAS  Google Scholar 

  74. Sanchez-Villegas A, Bes-Rastrollo M, Martinez-Gonzalez MA, Serra-Majem L. Adherence to a Mediterranean dietary pattern and weight gain in a follow-up study: the SUN cohort. Int J Obes. 2006;30(2):350–8.

    CAS  Google Scholar 

  75. Panagiotakos DB, Arapi S, Pitsavos C, Antonoulas A, Mantas Y, Zombolos S, et al. The relationship between adherence to the Mediterranean diet and the severity and short-term prognosis of acute coronary syndromes (ACS): The Greek Study of ACS (The GREECS). Nutrition. 2006;22(7–8):722–30.

    PubMed  Google Scholar 

  76. Panagiotakos DB, Chrysohoou C, Pitsavos C, Stefanadis C. Association between the prevalence of obesity and adherence to the Mediterranean diet: the ATTICA study. Nutrition. 2006;22(5):449–56.

    PubMed  Google Scholar 

  77. Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62(5):177–203.

    PubMed  CAS  Google Scholar 

  78. Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14(5):228–32.

    PubMed  CAS  Google Scholar 

  79. Salas-Salvado J, Garcia-Arellano A, Estruch R, Marquez-Sandoval F, Corella D, Fiol M, et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. 2008;62(5):651–9.

    PubMed  CAS  Google Scholar 

  80. Gaesser GA, Angadi SS, Sawyer BJ. Exercise and diet, independent of weight loss, improve cardiometabolic risk profile in overweight and obese individuals. Physician Sportsmed. 2011;39(2):87–97.

    Google Scholar 

  81. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6.

    PubMed  CAS  Google Scholar 

  82. McManus K, Antinoro L, Sacks F. A randomized controlled trial of a moderate-fat, low-energy diet compared with a low fat, low-energy diet for weight loss in overweight adults. Int J Obes Relat Metab Disord. 2001;25(10):1503–11.

    PubMed  CAS  Google Scholar 

  83. Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol. 2011;57(11):1299–313.

    PubMed  CAS  Google Scholar 

  84. Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr. 2005;82(1):41–8.

    PubMed  CAS  Google Scholar 

  85. Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr. 2008;87(1):44–55.

    PubMed  CAS  Google Scholar 

  86. Stadler DD, Burden V, Connor W, et al. Impact of 42-day atkins diet and energy-matched low-fat diet on weight and anthropometric indices. Abstract of the 12th annual FASEB meeting on experimental biology. San Diego; 2003;17:4–5.

    Google Scholar 

  87. Ranjit N, Evans MH, Byrd-Williams C, Evans AE, Hoelscher DM. Dietary and activity correlates of sugar-sweetened beverage consumption among adolescents. Pediatrics. 2010;126(4):e754–61.

    PubMed  Google Scholar 

  88. Shi H, Norman AW, Okamura WH, Sen A, Zemel MB. 1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J. 2001;15(14):2751–3.

    PubMed  CAS  Google Scholar 

  89. Teegarden D. The influence of dairy product consumption on body composition. J Nutr. 2005;135(12):2749–52.

    PubMed  CAS  Google Scholar 

  90. Teegarden D, Gunther CW. Can the controversial relationship between dietary calcium and body weight be mechanistically explained by alterations in appetite and food intake? Nutr Rev. 2008;66(10):601–5.

    PubMed  Google Scholar 

  91. Zemel MB, Teegarden D, Van Loan M, et al. Role of dietary products in modulating weight and fat loss: a multi-center trial. FASEB J. 2004;18:566.5 (abstr).

    Google Scholar 

  92. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium. FASEB J. 2000;14(9):1132–8.

    PubMed  CAS  Google Scholar 

  93. Zemel MB, Thompson W, Milstead A, Morris K, Campbell P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes Res. 2004;12(4):582–90.

    PubMed  CAS  Google Scholar 

  94. Shahar DR, Abel R, Elhayany A, Vardi H, Fraser D. Does dairy calcium intake enhance weight loss among overweight diabetic patients? Diabetes Care. 2007;30(3):485–9.

    PubMed  CAS  Google Scholar 

  95. Carruth BR, Skinner JD. The role of dietary calcium and other nutrients in moderating body fat in preschool children. Int J Obes Relat Metab Disord. 2001;25(4):559–66.

    PubMed  CAS  Google Scholar 

  96. Dougkas A, Reynolds CK, Givens ID, Elwood PC, Minihane AM. Associations between dairy consumption and body weight: a review of the evidence and underlying mechanisms. Nutr Res Rev. 2011;1–24 [Epub ahead of print].

    Google Scholar 

  97. Gilbert JA, Joanisse DR, Chaput JP, Miegueu P, Cianflone K, Almeras N, et al. Milk supplementation facilitates appetite control in obese women during weight loss: a randomised, single-blind, placebo-controlled trial. Br J Nutr. 2011;105(1):133–43.

    PubMed  CAS  Google Scholar 

  98. Soares MJ, Chan She Ping-Delfos W, Ghanbari MH. Calcium and vitamin D for obesity: a review of randomized controlled trials. Eur J Clin Nutr. 2011;65(9):994–1004.

    PubMed  CAS  Google Scholar 

  99. Duque G, Macoritto M, Kremer R. 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptor gamma 2 (PPARgamma2). Exp Gerontol. 2004;39(3):333–8.

    PubMed  CAS  Google Scholar 

  100. Wong KE, Szeto FL, Zhang W, Ye H, Kong J, Zhang Z, et al. Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab. 2009;296(4):E820–8.

    PubMed  CAS  Google Scholar 

  101. Boon N, Hul GB, Sicard A, Kole E, Van Den Berg ER, Viguerie N, et al. The effects of increasing serum calcitriol on energy and fat metabolism and gene expression. Obesity. 2006;14(10):1739–46.

    PubMed  CAS  Google Scholar 

  102. Moore CS, Bryant SP, Mishra GD, Krebs JD, Browning LM, Miller GJ, et al. Oily fish reduces plasma triacylglycerols: a primary prevention study in overweight men and women. Nutrition. 2006;22(10):1012–24.

    PubMed  CAS  Google Scholar 

  103. Mori TA, Burke V, Puddey IB, Watts GF, O’Neal DN, Best JD, et al. Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men. Am J Clin Nutr. 2000;71(5):1085–94.

    PubMed  CAS  Google Scholar 

  104. Abeywardena MY, Patten GS. Role of omega3 longchain polyunsaturated fatty acids in reducing cardio-metabolic risk factors. Endocr Metab Immune Disord Drug Targets. 2011;11(3):232–46.

    PubMed  CAS  Google Scholar 

  105. Slavin JL. Dietary fiber and body weight. Nutrition. 2005;21(3):411–8.

    PubMed  Google Scholar 

  106. Rossi M, Bosetti C, Talamini R, Lagiou P, Negri E, Franceschi S, et al. Glycemic index and glycemic load in relation to body mass index and waist to hip ratio. Eur J Nutr. 2010;49(8):459–64.

    PubMed  Google Scholar 

  107. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34(3):362–6.

    PubMed  CAS  Google Scholar 

  108. Wolever TM, Jenkins DJ, Jenkins AL, Josse RG. The glycemic index: methodology and clinical implications. Am J Clin Nutr. 1991;54(5):846–54.

    PubMed  CAS  Google Scholar 

  109. Brand-Miller JC, Petocz P, Colagiuri S. Meta-analysis of low-glycemic index diets in the management of diabetes: response to Franz. Diabetes Care. 2003;26(12):3363–4. author reply 3364–5.

    PubMed  Google Scholar 

  110. Wolever TM, Mehling C. High-carbohydrate-low-glycaemic index dietary advice improves glucose disposition index in subjects with impaired glucose tolerance. Br J Nutr. 2002;87(5):477–87.

    PubMed  CAS  Google Scholar 

  111. Marsh K, Barclay A, Colagiuri S, Brand-Miller J. Glycemic index and glycemic load of carbohydrates in the diabetes diet. Curr Diab Rep. 2011;11(2):120–7.

    PubMed  CAS  Google Scholar 

  112. Thomas D, Elliott EJ. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Syst Rev Database. 2009(1):CD006296.

    Google Scholar 

  113. Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism. 1998;47(10):1245–51.

    PubMed  CAS  Google Scholar 

  114. O’Connell MA, Gilbertson HR, Donath SM, Cameron FJ. Optimizing postprandial glycemia in pediatric patients with type 1 diabetes using insulin pump therapy: impact of glycemic index and prandial bolus type. Diabetes Care. 2008;31(8):1491–5.

    PubMed  Google Scholar 

  115. Ryan RL, King BR, Anderson DG, Attia JR, Collins CE, Smart CE. Influence of and optimal insulin therapy for a low-glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care. 2008;31(8):1485–90.

    PubMed  CAS  Google Scholar 

  116. Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Syst Rev Database. 2007(3):CD005105.

    Google Scholar 

  117. Kelishadi R, Zemel MB, Hashemipour M, Hosseini M, Mohammadifard N, Poursafa P. Can a dairy-rich diet be effective in long-term weight control of young children? J Am Coll Nutr. 2009;28(5):601–10.

    PubMed  CAS  Google Scholar 

  118. Young PC, West SA, Ortiz K, Carlson J. A pilot study to determine the feasibility of the low glycemic index diet as a treatment for overweight children in primary care practice. Ambulatory Pediatr. 2004;4(1):28–33.

    Google Scholar 

  119. Ebbeling CB, Leidig MM, Sinclair KB, Hangen JP, Ludwig DS. A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med. 2003;157(8):773–9.

    PubMed  Google Scholar 

  120. Goldbacher EM, Matthews KA. Are psychological characteristics related to risk of the metabolic syndrome? A review of the literature. Ann Behav Med. 2007;34(3):240–52.

    PubMed  Google Scholar 

  121. Rolls BJ, Ello-Martin JA, Tohill BC. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev. 2004;62(1):1–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracie L. Miller M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Watkins, R.D., Neri, D., Miller, T.L. (2012). Nutritional Evaluation and Intervention. In: Lipshultz, S., Messiah, S., Miller, T. (eds) Pediatric Metabolic Syndrome. Springer, London. https://doi.org/10.1007/978-1-4471-2366-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2366-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2365-1

  • Online ISBN: 978-1-4471-2366-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics