Skip to main content

The Relationship of Childhood Obesity with Cardiomyopathy and Heart Failure

  • Chapter
  • First Online:
Book cover Pediatric Metabolic Syndrome

Abstract

Obesity causes structural and functional changes in the hearts of children, in addition to increasing cardiometabolic risk and predisposition to early coronary artery disease. In this chapter, we summarize the evidence of obesity-related cardiomyopathy and discuss the pathophysiology of its development. We also describe the current practices in its diagnosis and treatment in children. The evidence shows that obesity-related cardiac changes in childhood can eventually worsen cardiac function and increase the risk of heart failure in early adulthood. Thus, efforts to improve the diagnosis, prevention, and treatment of obesity-related cardiomyopathy could improve not only length and quality of life for obese children but also produce substantial savings in future care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat Clin Pract Cardiovasc Med. 2007;4(8):436–43.

    Article  PubMed  CAS  Google Scholar 

  2. Alexander JK. The cardiomyopathy of obesity. Prog Cardiovasc Dis. 1985;27(5):325–34.

    Article  PubMed  CAS  Google Scholar 

  3. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918.

    Article  PubMed  Google Scholar 

  4. The NS, Suchindran C, North KE, Popkin BM, Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. JAMA. 2010;304(18):2042–7.

    Article  PubMed  CAS  Google Scholar 

  5. Alpert MA, Lambert CR, Panayiotou H, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76(16):1194–7.

    Article  PubMed  CAS  Google Scholar 

  6. Nakajima T, Fujioka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Noninvasive study of left ventricular performance in obese patients: influence of duration of obesity. Circulation. 1985;71(3):481–6.

    Article  PubMed  CAS  Google Scholar 

  7. Messiah SE, Arheart KL, Luke B, Lipshultz SE, Miller TL. Relationship between body mass index and metabolic syndrome risk factors among US 8- to 14-year-olds, 1999 to 2002. J Pediatr. 2008;153(2):215–21.

    Article  PubMed  Google Scholar 

  8. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002.

    Article  PubMed  CAS  Google Scholar 

  9. Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67(5):968–77.

    Article  PubMed  CAS  Google Scholar 

  10. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    Article  PubMed  Google Scholar 

  11. Kasper EK, Hruban RH, Baughman KL. Cardiomyopathy of obesity: a clinicopathologic evaluation of 43 obese patients with heart failure. Am J Cardiol. 1992;70(9):921–4.

    Article  PubMed  CAS  Google Scholar 

  12. Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J. 1980;99(4):446–58.

    Article  PubMed  CAS  Google Scholar 

  13. Whalley GA, Gusso S, Hofman P, et al. Structural and functional cardiac abnormalities in adolescent girls with poorly controlled type 2 diabetes. Diabetes Care. 2009;32(5):883–8.

    Article  PubMed  Google Scholar 

  14. Duflou J, Virmani R, Rabin I, Burke A, Farb A, Smialek J. Sudden death as a result of heart disease in morbid obesity. Am Heart J. 1995;130(2):306–13.

    Article  PubMed  CAS  Google Scholar 

  15. Alpert MA, Terry BE, Mulekar M, et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol. 1997;80(6):736–40.

    Article  PubMed  CAS  Google Scholar 

  16. Malavazos AE, Ermetici F, Coman C, Corsi MM, Morricone L, Ambrosi B. Influence of epicardial adipose tissue and adipocytokine levels on cardiac abnormalities in visceral obesity. Int J Cardiol. 2007;121(1):132–4.

    Article  PubMed  Google Scholar 

  17. Daniels SR, Witt SA, Glascock B, Khoury PR, Kimball TR. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr. 2002;141(2):186–90.

    Article  PubMed  Google Scholar 

  18. Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol. 2005;45(1):87–92.

    Article  PubMed  Google Scholar 

  19. Amad KH, Brennan JC, Alexander JK. The cardiac pathology of chronic exogenous obesity. Circulation. 1965;32(5):740–5.

    PubMed  CAS  Google Scholar 

  20. Lauer MS, Anderson KM, Levy D. Separate and joint influences of obesity and mild hypertension on left ventricular mass and geometry: the Framingham Heart Study. J Am Coll Cardiol. 1992;19(1):130–4.

    Article  PubMed  CAS  Google Scholar 

  21. Karason K, Wallentin I, Larsson B, Sjostrom L. Effects of obesity and weight loss on cardiac function and valvular performance. Obes Res. 1998;6(6):422–9.

    PubMed  CAS  Google Scholar 

  22. Messerli FH, Sundgaard-Riise K, Reisin ED, et al. Dimorphic cardiac adaptation to obesity and arterial hypertension. Ann Intern Med. 1983;99(6):757–61.

    PubMed  CAS  Google Scholar 

  23. Wikstrand J, Pettersson P, Bjorntorp P. Body fat distribution and left ventricular morphology and function in obese females. J Hypertens. 1993;11(11):1259–66.

    Article  PubMed  CAS  Google Scholar 

  24. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.

    Article  PubMed  CAS  Google Scholar 

  25. Brown DW, Giles WH, Croft JB. Left ventricular hypertrophy as a predictor of coronary heart disease mortality and the effect of hypertension. Am Heart J. 2000;140(6):848–56.

    Article  PubMed  CAS  Google Scholar 

  26. Chinali M, de Simone G, Roman MJ, et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol. 2006;47(11):2267–73.

    Article  PubMed  Google Scholar 

  27. Crowley DI, Khoury PR, Urbina EM, Ippisch HM, Kimball TR. Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index. J Pediatr. 2011;158(5):709–14.

    Article  PubMed  Google Scholar 

  28. Urbina EM, Gidding SS, Bao W, Pickoff AS, Berdusis K, Berenson GS. Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa Heart Study. Circulation. 1995;91(9):2400–6.

    PubMed  CAS  Google Scholar 

  29. Yoshinaga M, Yuasa Y, Hatano H, et al. Effect of total adipose weight and systemic hypertension on left ventricular mass in children. Am J Cardiol. 1995;76(11):785–7.

    Article  PubMed  CAS  Google Scholar 

  30. Berry C, Sattar N. Stressed hearts in children with obesity and diabetes: a cause for concern? Diabetologia. 2011;54(4):715–8.

    Article  PubMed  CAS  Google Scholar 

  31. Kono Y, Yoshinaga M, Oku S, Nomura Y, Nakamura M, Aihoshi S. Effect of obesity on echocardiographic parameters in children. Int J Cardiol. 1994;46(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  32. Alpert MA, Lambert CR, Terry BE, et al. Interrelationship of left ventricular mass, systolic function and diastolic filling in normotensive morbidly obese patients. Int J Obes Relat Metab Disord. 1995;19(8):550–7.

    PubMed  CAS  Google Scholar 

  33. Rasooly Y, Sasson Z, Gupta R. Relation between body fat distribution and left ventricular mass in men without structural heart disease or systemic hypertension. Am J Cardiol. 1993;71(16):1477–9.

    Article  PubMed  CAS  Google Scholar 

  34. de la Maza MP, Estevez A, Bunout D, Klenner C, Oyonarte M, Hirsch S. Ventricular mass in hypertensive and normotensive obese subjects. Int J Obes Relat Metab Disord. 1994;18(4):193–7.

    PubMed  Google Scholar 

  35. Li X, Li S, Ulusoy E, Chen W, Srinivasan SR, Berenson GS. Childhood adiposity as a predictor of cardiac mass in adulthood: the Bogalusa Heart Study. Circulation. 2004;110(22):3488–92.

    Article  PubMed  Google Scholar 

  36. Shah AS, Khoury PR, Dolan LM, et al. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults. Diabetologia. 2011;54(4):722–30.

    Article  PubMed  CAS  Google Scholar 

  37. Ippisch HM, Inge TH, Daniels SR, et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J Am Coll Cardiol. 2008;51(14):1342–8.

    Article  PubMed  Google Scholar 

  38. Sons HU, Hoffmann V. Epicardial fat cell size, fat distribution and fat infiltration of the right and left ventricle of the heart. Anat Anz. 1986;161(5):355–73.

    PubMed  CAS  Google Scholar 

  39. Smith HL, Willius FA. Adiposity of the heart: a clinical and pathologic study of one hundred and thirty-six obese patients. Arch Intern Med. 1933;52:911–31.

    Article  Google Scholar 

  40. Carpenter HM. Myocardial fat infiltration. Am Heart J. 1962;63:491–6.

    Article  PubMed  CAS  Google Scholar 

  41. Bharati S, Lev M. Cardiac conduction system involvement in sudden death of obese young people. Am Heart J. 1995;129(2):273–81.

    Article  PubMed  CAS  Google Scholar 

  42. Alexander JK. Obesity and cardiac performance. Am J Cardiol. 1964;14:860–5.

    Article  PubMed  CAS  Google Scholar 

  43. Backman L, Freyschuss U, Hallberg D, Melcher A. Cardiovascular function in extreme obesity. Acta Med Scand. 1973;193(5):437–46.

    PubMed  CAS  Google Scholar 

  44. Kaltman AJ, Goldring RM. Role of circulatory congestion in the cardiorespiratory failure of obesity. Am J Med. 1976;60(5):645–53.

    Article  PubMed  CAS  Google Scholar 

  45. Sharpe J. Impact of obesity on diastolic function in subjects  <  or  =  16 years of age. Am J Cardiol. 2006;98(5):691–3.

    Article  PubMed  Google Scholar 

  46. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110(19):3081–7.

    Article  PubMed  Google Scholar 

  47. Beljic T, Miric M. Improved metabolic control does not reverse left ventricular filling abnormalities in newly diagnosed non-insulin-dependent diabetes patients. Acta Diabetol. 1994;31(3):147–50.

    Article  PubMed  CAS  Google Scholar 

  48. Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care. 2001;24(1):5–10.

    Article  PubMed  CAS  Google Scholar 

  49. Vanninen E, Mustonen J, Vainio P, Lansimies E, Uusitupa M. Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus. Am J Cardiol. 1992;70(3):371–8.

    Article  PubMed  CAS  Google Scholar 

  50. Tarumi N, Iwasaka T, Takahashi N, et al. Left ventricular diastolic filling properties in diabetic patients during isometric exercise. Cardiology. 1993;83(5–6):316–23.

    Article  PubMed  CAS  Google Scholar 

  51. Pascual M, Pascual DA, Soria F, et al. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart. 2003;89(10):1152–6.

    Article  PubMed  CAS  Google Scholar 

  52. Alpert MA, Terry BE, Lambert CR, et al. Factors influencing left ventricular systolic function in nonhypertensive morbidly obese patients, and effect of weight loss induced by gastroplasty. Am J Cardiol. 1993;71(8):733–7.

    Article  PubMed  CAS  Google Scholar 

  53. Koehler B, Malecka-Tendera E, Drzewiecka B, et al. Evaluation of the cardiovascular system in children with simple obesity. Part II. Echocardiographic assessment. Mater Med Pol. 1989;21(2):131–3.

    PubMed  CAS  Google Scholar 

  54. Kimball TR, Daniels SR, Khoury PR, Magnotti RA, Turner AM, Dolan LM. Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation. 1994;90(1):357–61.

    PubMed  CAS  Google Scholar 

  55. Uusitupa M, Siitonen O, Pyorala K, Lansimies E. Left ventricular function in newly diagnosed non-insulin-dependent (type 2) diabetics evaluated by systolic time intervals and echocardiography. Acta Med Scand. 1985;217(4):379–88.

    Article  PubMed  CAS  Google Scholar 

  56. Palmieri V, Bella JN, Arnett DK, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation. 2001;103(1):102–7.

    PubMed  CAS  Google Scholar 

  57. Mustonen JN, Uusitupa MI, Tahvanainen K, et al. Impaired left ventricular systolic function during exercise in middle-aged insulin-dependent and noninsulin-dependent diabetic subjects without clinically evident cardiovascular disease. Am J Cardiol. 1988;62(17):1273–9.

    Article  PubMed  CAS  Google Scholar 

  58. Wong CY, O’Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol. 2006;47(3):611–6.

    Article  PubMed  Google Scholar 

  59. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52(2):434–41.

    Article  PubMed  CAS  Google Scholar 

  60. Mazumder PK, O’Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53(9):2366–74.

    Article  PubMed  CAS  Google Scholar 

  61. Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146(12):5341–9.

    Article  PubMed  CAS  Google Scholar 

  62. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–6.

    Article  PubMed  Google Scholar 

  63. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. Lancet. 2004;364(9447):1786–8.

    Article  PubMed  CAS  Google Scholar 

  64. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA. 2000;97(4):1784–9.

    Article  PubMed  CAS  Google Scholar 

  65. Szczepaniak LS, Dobbins RL, Metzger GJ, et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med. 2003;49(3):417–23.

    Article  PubMed  CAS  Google Scholar 

  66. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. American College of Physicians and the American Physiological Society. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517–24.

    PubMed  CAS  Google Scholar 

  67. Listenberger LL, Schaffer JE. Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med. 2002;12(3):134–8.

    Article  PubMed  CAS  Google Scholar 

  68. Unger R. Lipotoxic diseases. Annu Rev Med. 2002;53:319–36.

    Article  PubMed  CAS  Google Scholar 

  69. Minhas KM, Khan SA, Raju SV, et al. Leptin repletion restores depressed {beta}-adrenergic contractility in ob/ob mice independently of cardiac hypertrophy. J Physiol. 2005;565(Pt 2):463–74.

    Article  PubMed  CAS  Google Scholar 

  70. Iozzo P, Chareonthaitawee P, Rimoldi O, Betteridge DJ, Camici PG, Ferrannini E. Mismatch between insulin-mediated glucose uptake and blood flow in the heart of patients with Type II diabetes. Diabetologia. 2002;45(10):1404–9.

    Article  PubMed  CAS  Google Scholar 

  71. Scheuermann-Freestone M, Madsen PL, Manners D, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107(24):3040–6.

    Article  PubMed  CAS  Google Scholar 

  72. Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.

    Article  PubMed  CAS  Google Scholar 

  73. Valle M, Martos R, Gascon F, Canete R, Zafra MA, Morales R. Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab. 2005;31(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  74. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  75. Arnaiz P, Acevedo M, Barja S, et al. Adiponectin levels, cardiometabolic risk factors and markers of subclinical atherosclerosis in children. Int J Cardiol. 2010;138(2):138–44.

    Article  PubMed  Google Scholar 

  76. Winer JC, Zern TL, Taksali SE, et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin Endocrinol Metab. 2006;91(11):4415–23.

    Article  PubMed  CAS  Google Scholar 

  77. Pilz S, Horejsi R, Moller R, et al. Early atherosclerosis in obese juveniles is associated with low serum levels of adiponectin. J Clin Endocrinol Metab. 2005;90(8):4792–6.

    Article  PubMed  CAS  Google Scholar 

  78. Chu NF, Shen MH, Wu DM, Lai CJ. Relationship between plasma adiponectin levels and metabolic risk profiles in Taiwanese children. Obes Res. 2005;13(11):2014–20.

    Article  PubMed  CAS  Google Scholar 

  79. Beauloye V, Zech F, Tran HT, Clapuyt P, Maes M, Brichard SM. Determinants of early atherosclerosis in obese children and adolescents. J Clin Endocrinol Metab. 2007;92(8):3025–32.

    Article  PubMed  CAS  Google Scholar 

  80. Pervanidou P. Associations between circulating N-terminal pro-Brain Natriuretic Peptide (NT-proBNP) and adiponectin concentrations depend on obesity level in female adolescents: gender dimorphic findings. Horm Metab Res. 2009;41(11):829–33.

    Article  PubMed  CAS  Google Scholar 

  81. Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S64–73.

    Article  PubMed  CAS  Google Scholar 

  82. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    PubMed  CAS  Google Scholar 

  83. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36.

    Article  PubMed  CAS  Google Scholar 

  84. Alexander JK, Dennis EW, Smith WG, Amad KH, Duncan WC, Austin RC. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Cent Bull. 1962;1:39–44.

    PubMed  Google Scholar 

  85. Messerli FH, Christie B, DeCarvalho JG, et al. Obesity and essential hypertension. Hemodynamics, intravascular volume, sodium excretion, and plasma renin activity. Arch Intern Med. 1981;141(1):81–5.

    Article  PubMed  CAS  Google Scholar 

  86. de Divitiis O, Fazio S, Petitto M, Maddalena G, Contaldo F, Mancini M. Obesity and cardiac function. Circulation. 1981;64(3):477–82.

    Article  PubMed  Google Scholar 

  87. Agarwal N, Shibutani K, SanFilippo JA, Del Guercio LR. Hemodynamic and respiratory changes in surgery of the morbidly obese. Surgery. 1982;92(2):226–34.

    PubMed  CAS  Google Scholar 

  88. Giacchetti G, Faloia E, Mariniello B, et al. Overexpression of the renin-angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens. 2002;15(5):381–8.

    Article  PubMed  CAS  Google Scholar 

  89. Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res. 1999;7(4):355–62.

    PubMed  CAS  Google Scholar 

  90. Harte A, McTernan P, Chetty R, et al. Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation. 2005;111(15):1954–61.

    Article  PubMed  CAS  Google Scholar 

  91. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25(5):563–75.

    Article  PubMed  CAS  Google Scholar 

  92. Corry DB, Tuck ML. Obesity, hypertension, and sympathetic nervous system activity. Curr Hypertens Rep. 1999;1(2):119–26.

    Article  PubMed  CAS  Google Scholar 

  93. Festa A, D’Agostino Jr R, Hales CN, Mykkanen L, Haffner SM. Heart rate in relation to insulin sensitivity and insulin secretion in nondiabetic subjects. Diabetes Care. 2000;23(5):624–8.

    Article  PubMed  CAS  Google Scholar 

  94. Sivitz WI, Wayson SM, Bayless ML, Sinkey CA, Haynes WG. Obesity impairs vascular relaxation in human subjects: hyperglycemia exaggerates adrenergic vasoconstriction arterial dysfunction in obesity and diabetes. J Diabetes Complications. 2007;21(3):149–57.

    Article  PubMed  Google Scholar 

  95. Sundell J, Laine H, Luotolahti M, et al. Obesity affects myocardial vasoreactivity and coronary flow response to insulin. Obes Res. 2002;10(7):617–24.

    Article  PubMed  CAS  Google Scholar 

  96. Wang T. Obesity and the Risk of New-Onset Atrial Fibrillation. JAMA. 2004;292(20):2471–7.

    Article  PubMed  CAS  Google Scholar 

  97. Dublin S, French B, Glazer NL, et al. Risk of new-onset atrial fibrillation in relation to body mass index. Arch Intern Med. 2006;166(21):2322–8.

    Article  PubMed  Google Scholar 

  98. Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah AS, Habib RH. Obesity and risk of new-onset atrial fibrillation after cardiac surgery. Circulation. 2005;112(21):3247–55.

    Article  PubMed  Google Scholar 

  99. Drenick EJ, Fisler JS. Sudden cardiac arrest in morbidly obese surgical patients unexplained after autopsy. Am J Surg. 1988;155(6):720–6.

    Article  PubMed  CAS  Google Scholar 

  100. Messerli FH, Nunez BD, Ventura HO, Snyder DW. Overweight and sudden death. Increased ventricular ectopy in cardiomyopathy of obesity. Arch Intern Med. 1987;147(10):1725–8.

    Article  PubMed  CAS  Google Scholar 

  101. Alpert MA, Terry BE, Cohen MV, Fan TM, Painter JA, Massey CV. The electrocardiogram in morbid obesity. Am J Cardiol. 2000;85(7):908–10. A10.

    Article  PubMed  CAS  Google Scholar 

  102. Eisenstein I, Edelstein J, Sarma R, Sanmarco M, Selvester RH. The electrocardiogram in obesity. J Electrocardiol. 1982;15(2):115–8.

    Article  PubMed  CAS  Google Scholar 

  103. Okin PM, Roman MJ, Devereux RB, Kligfield P. ECG identification of left ventricular hypertrophy Relationship of test performance to body habitus. J Electrocardiol. 1996;29(Suppl):256–61.

    Article  PubMed  Google Scholar 

  104. Alpert MA. Value and limitations of echocardiography in the assessment of obese patients. Echocardiography. 1986;3(3):261–72.

    Article  Google Scholar 

  105. Stoddard MF, Tseuda K, Thomas M, Dillon S, Kupersmith J. The influence of obesity on left ventricular filling and systolic function. Am Heart J. 1992;124(3):694–9.

    Article  PubMed  CAS  Google Scholar 

  106. Leong DP, De Pasquale CG, Selvanayagam JB. Heart failure with normal ejection fraction: the complementary roles of echocardiography and CMR imaging. JACC Cardiovasc Imaging. 2010;3(4):409–20.

    Article  PubMed  Google Scholar 

  107. Hoit BD. Strain and strain rate echocardiography and coronary artery disease. Circ Cardiovasc Imaging. 2011;4(2):179–90.

    Article  PubMed  Google Scholar 

  108. Ferraro S, Perrone-Filardi P, Desiderio A, et al. Left ventricular systolic and diastolic function in severe obesity: a radionuclide study. Cardiology. 1996;87(4):347–53.

    Article  PubMed  CAS  Google Scholar 

  109. Abidov A, Hachamovitch R, Berman DS. Modern nuclear cardiac imaging in diagnosis and clinical management of patients with left ventricular dysfunction. Minerva Cardioangiol. 2004;52(6):505–19.

    PubMed  CAS  Google Scholar 

  110. Orakzai SH, Orakzai RH, Nasir K, Budoff MJ. Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr. 2006;30(4):555–63.

    Article  PubMed  Google Scholar 

  111. Epstein FH. MRI of left ventricular function. J Nucl Cardiol. 2007;14(5):729–44.

    Article  PubMed  Google Scholar 

  112. Iacobellis GG. Cardiac adiposity and cardiovascular risk: potential role of epicardial adipose tissue. Curr Cardiol Rev. 2007;3(1):11–4.

    Article  Google Scholar 

  113. Lainscak M, von Haehling S, Anker SD. Natriuretic peptides and other biomarkers in chronic heart failure: from BNP, NT-proBNP, and MR-proANP to routine biochemical markers. Int J Cardiol. 2009;132(3):303–11.

    Article  PubMed  Google Scholar 

  114. Iwanaga Y, Kihara Y, Niizuma S, et al. BNP in overweight and obese patients with heart failure: an analysis based on the BNP-LV diastolic wall stress relationship. J Card Fail. 2007;13(8):663–7.

    Article  PubMed  CAS  Google Scholar 

  115. Taylor JA, Christenson RH, Rao K, Jorge M, Gottlieb SS. B-type natriuretic peptide and N-terminal pro B-type natriuretic peptide are depressed in obesity despite higher left ventricular end diastolic pressures. Am Heart J. 2006;152(6):1071–6.

    Article  PubMed  CAS  Google Scholar 

  116. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600.

    Article  PubMed  CAS  Google Scholar 

  117. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  PubMed  CAS  Google Scholar 

  118. Verreth W, De Keyzer D, Pelat M, et al. Weight-loss-associated induction of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma correlate with reduced atherosclerosis and improved cardiovascular function in obese insulin-resistant mice. Circulation. 2004;110(20):3259–69.

    Article  PubMed  CAS  Google Scholar 

  119. Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304(16):930–3.

    Article  PubMed  CAS  Google Scholar 

  120. Hinderliter A, Sherwood A, Gullette EC, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162(12):1333–9.

    Article  PubMed  Google Scholar 

  121. Wirth A, Kroger H. Improvement of left ventricular morphology and function in obese subjects following a diet and exercise program. Int J Obes Relat Metab Disord. 1995;19(1):61–6.

    PubMed  CAS  Google Scholar 

  122. de la Cruz-Munoz N, Messiah SE, Arheart KL, Lopez-Mitnik G, Lipshultz SE, Livingstone A. Bariatric surgery significantly decreases the prevalence of type 2 diabetes mellitus and pre-diabetes among morbidly obese multiethnic adults: long-term results. J Am Coll Surg. 2011;212(4):505–11, discussion 512–3.

    Article  PubMed  Google Scholar 

  123. Inge TH, Miyano G, Bean J, et al. Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents. Pediatrics. 2009;123(1):214–22.

    Article  PubMed  Google Scholar 

  124. Bray GA, Ryan DH. Drug treatment of the overweight patient. Gastroenterology. 2007;132(6):2239–52.

    Article  PubMed  CAS  Google Scholar 

  125. Leombruni P, Piero A, Lavagnino L, Brustolin A, Campisi S, Fassino S. A randomized, double-blind trial comparing sertraline and fluoxetine 6-month treatment in obese patients with Binge Eating Disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(6):1599–605.

    Article  PubMed  CAS  Google Scholar 

  126. Stunkard AJ, Allison KC, Lundgren JD, et al. A paradigm for facilitating pharmacotherapy at a distance: sertraline treatment of the night eating syndrome. J Clin Psychiatry. 2006;67(10):1568–72.

    Article  PubMed  CAS  Google Scholar 

  127. Jordan J, Messerli FH, Lavie CJ, Aepfelbacher FC, Soria F. Reduction of weight and left ventricular mass with serotonin uptake inhibition in obese patients with systemic hypertension. Am J Cardiol. 1995;75(10):743–4.

    Article  PubMed  CAS  Google Scholar 

  128. Aronne LJ, Isoldi KK. Cannabinoid-1 receptor blockade in cardiometabolic risk reduction: efficacy. Am J Cardiol. 2007;100(12A):18P–26.

    Article  PubMed  CAS  Google Scholar 

  129. Godoy-Matos A, Carraro L, Vieira A, et al. Treatment of obese adolescents with sibutramine: a randomized, double-blind, controlled study. J Clin Endocrinol Metab. 2005;90(3):1460–5.

    Article  PubMed  CAS  Google Scholar 

  130. Connolly HM, McGoon MD. Obesity drugs and the heart. Curr Probl Cardiol. 1999;24(12):745–92.

    Article  PubMed  CAS  Google Scholar 

  131. Rothman RB, Baumann MH. Appetite suppressants, cardiac valve disease and combination pharmacotherapy. Am J Ther. 2009;16(4):354–64.

    Article  PubMed  Google Scholar 

  132. Dahl CF, Allen MR, Urie PM, Hopkins PN. Valvular regurgitation and surgery associated with fenfluramine use: an analysis of 5743 individuals. BMC Med. 2008;6:34.

    Article  PubMed  Google Scholar 

  133. Bays HE. Lorcaserin: drug profile and illustrative model of the regulatory challenges of weight-loss drug development. Expert Rev Cardiovasc Ther. 2011;9(3):265–77.

    Article  PubMed  CAS  Google Scholar 

  134. Hughes TE, Vath JE, Marjason J, Proietto J. ZGN-433 is well-tolerated, reduces body weight rapidly and improves cardiovascular risk markers in obese subjects: The ZAF-001 proof of concept trial. Diabetes. 2011;60(Suppl 1A):LB15.

    Google Scholar 

  135. Luthin DR. Anti-obesity effects of small molecule melanin-concentrating hormone receptor 1 (MCHR1) antagonists. Life Sci. 2007;81(6):423–40.

    Article  PubMed  CAS  Google Scholar 

  136. Rusconi P, Gomez-Marin O, Rossique-Gonzalez M, et al. Carvedilol in children with cardiomyopathy: 3-year experience at a single institution. J Heart Lung Transplant. 2004;23(7):832–8.

    Article  PubMed  Google Scholar 

  137. Rossner S, Taylor CL, Byington RP, Furberg CD. Long term propranolol treatment and changes in body weight after myocardial infarction. BMJ. 1990;300(6729):902–3.

    Article  PubMed  CAS  Google Scholar 

  138. Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care. 2003;26(1):172–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yasir Qureshi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Qureshi, M.Y., Wilkinson, J.D., Lipshultz, S.E. (2012). The Relationship of Childhood Obesity with Cardiomyopathy and Heart Failure. In: Lipshultz, S., Messiah, S., Miller, T. (eds) Pediatric Metabolic Syndrome. Springer, London. https://doi.org/10.1007/978-1-4471-2366-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2366-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2365-1

  • Online ISBN: 978-1-4471-2366-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics