Skip to main content

5-Axis Flank Milling of Sculptured Surfaces

  • Chapter
  • First Online:
Machining of Complex Sculptured Surfaces

Abstract

This chapter covers the various free-form surface flank milling strategies available, focusing in particular on those for ruled surfaces as widely used in defining turbomachine parts. All these positionings seek to reduce interference between the cutting tool and the surface to be milled so as to respect the tolerances dictated by the Design Office. The range of strategies presented goes from the simplest, using analytical positioning on a particular rule, through to complex procedures defined using global numerical methods that calculate the toolpath in its entirety. Approaches adapted to conical and half-barrel cutter geometries are also addressed. Machining of free-form surfaces is considered from two differing perspectives: either considering a free-form surface to be a set of ruled surfaces onto which the previously mentioned methods are applied, or studying the differential geometry of the cutters and surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaves-Jacob J (2009) Développement d’une méthodologie de réduction des défauts géométriques : application à l’usinage five-axis de composants de turbomachine. Thèse de doctorat. Arts et Métiers ParisTech, Cluny

    Google Scholar 

  2. Chavez-Jacob J, Poulachon G, Duc E (2009) New approach to 5-axis flank milling of free-form surfaces: computation of adaptated tool shape. Comput Aided Des 41:918–929

    Article  Google Scholar 

  3. Rubio W (1993) Génération de trajectoires du centre de l’outil pour l’usinage de surfaces complexes sur machines à trois et cinq axes. Thèse de doctorat, Université Paul Sabatier Toulouse, France

    Google Scholar 

  4. Liu XW (1995) Five axis NC cylindrical milling of sculptured surfaces. Comput Aided Des 27:887–894

    Article  Google Scholar 

  5. Stute G, Storr A, Sielaff W (1979) NC programming of ruled surfaces for five axis machining. Annals of the CIRP 28:267–271

    Google Scholar 

  6. Bedi S, Mann S, Menzel C (2003) Flank milling with flat end milling cutter. Comput Aided Des 35:293–300

    Google Scholar 

  7. Redonnet JM, Rubio W, Dessein G (1998) Side milling of ruled surfaces-Optimum positioning of the milling cutter and calculation of interference. Int J Adv Manuf Technol 14:459–465

    Article  Google Scholar 

  8. Monies F, Rubio W, Redonnet JM, Lagarrigue P (2001) Comparative study of interference caused by standard and improved positioning of a conical milling cutter working on a ruled surface. J Eng Manuf (Part B) 215:1305–1317

    Article  Google Scholar 

  9. Senatore J, Monies F, Redonnet JM, Rubio W (2005) Analysis of improved positioning in five-axis ruled surface milling using envelope surface. Comput Aided Des 37:989–998

    Article  Google Scholar 

  10. Senatore J (2007) Analyse qualitative des parametres influents pour la planification des trajectoires sur surfaces gauches. Thèse de doctorat, Université Paul Sabatier Toulouse, France

    Google Scholar 

  11. Senatore J, Monies F, Landon Y, Rubio W (2008) Optimising positioning of the axis of a milling cutter on an offset surface by geometric error minimisation. Int J Adv Manuf Technol 37:861–871

    Article  Google Scholar 

  12. Monies F, Redonnet JM, Rubio W, Lagarrigue P (2000) Improved positioning of a conical mill for machining ruled surfaces: application to turbine blade. J Eng Manuf (Part B) 214:625–634

    Article  Google Scholar 

  13. Monies F (2001) Positionnement hors interférence pour l’usinage en bout et en roulant des surfaces gauches. Thèse de doctorat, Université Paul Sabatier Toulouse, France

    Google Scholar 

  14. Monies F, Felices JN, Rubio W, Redonnet JM, Lagarrigue P (2002) Five-axis NC milling of ruled surfaces: optimal geometry of a conical tool. Int J Prod Res 40:2901–2922

    Article  Google Scholar 

  15. Peternell M, Pottmann H, Steiner T, Zhao H (2005) Swept volumes. Comput Aided Des Appl 2:599–608

    Google Scholar 

  16. Abdel-malek K, Yeh HJ (1997) Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Comput Aided Des 29:457–468

    Article  Google Scholar 

  17. Li C, Bedi S, Mann S (2005) Error measurements for flank milling. Comput Aided Des 37:1459–1468

    Article  Google Scholar 

  18. Chiou JCJ (2004) Accurate tool position for five-axis ruled surface machining by swept envelope approach. Comput Aided Des 36:967–974

    Article  Google Scholar 

  19. Lee JJ, Suh SH (1998) Interference-free tool-path planning for flank milling of twisted ruled surfaces. Int J Adv Manuf Technol 14:795–805

    Article  Google Scholar 

  20. Menzel C, Bedi S, Mann S (2004) Triple tangent flank milling of ruled surfaces. Comput Aided Des 36:289–296

    Article  Google Scholar 

  21. Li C, Bedi S, Mann S (2006) Flank milling of a ruled surface with conical tools–an optimization approach. Int J Adv Manuf Technol 29:1115–1124

    Article  Google Scholar 

  22. Gong H, Cao LX, Liu J (2005) Improved positioning of cylindrical cutter for flank milling ruled surface. Comput Aided Des 37:1205–1213

    Article  Google Scholar 

  23. Elber G (1995) Model fabrication using surface layout projection. Comput Aided Des 27:283–291

    Article  MATH  Google Scholar 

  24. Elber G, Russ F (1997) 5-axis freeform surface milling using piecewise ruled surface approximation. ASME J Eng Ind 119:383–387

    Google Scholar 

  25. Chu CH, Chen JT (2006) Tool path planning for five-axis flank milling with developable surface approximation. Int J Adv Manuf Technol 29:707–713

    Article  Google Scholar 

  26. Tsai WL, Wang CCL, Chu CH, Tang K (2008) Optimal quadrangulation of a strip for flank milling. Comput Aided Des Appl 5:307–315

    Google Scholar 

  27. Marciniak K (1987) Influence of surface shape on admissible tool positions in five-axis face milling. Comput Aided Des 19:233–236

    Article  MATH  Google Scholar 

  28. Marciniak K (1991) Geometric Modelling for Numerically Controlled Machining. Oxford Science Publications, New York

    MATH  Google Scholar 

  29. Gong H, Cao L, Liu J (2008) Second order approximation of tool envelope surface for 5-axis machining with single point contact. Comput Aided Des 40:604–615

    Article  Google Scholar 

  30. Gong H, Fang FZ, Hu XT, Cao L, Liu J (2010) Optimization of tool positions locally based on the BCELTP for 5-axis machining of free-form surfaces. Comput Aided Des 42:558–570

    Article  Google Scholar 

  31. Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelope surface. Comput Aided Des 35:375–382

    Article  Google Scholar 

  32. Pechard PY (2009) Génération de trajectoires d’usinage grande vitesse 5 axes par flanc d’outil: intégration d’un critère de fluidité. Thèse de doctorat, Ecole Normale Supérieure de Cachan, France

    Google Scholar 

  33. Pechard PY, Tournier C, Lartigue C, Lugarini JP (2009) Geometrical deviations versus smoothness in 5-axis high-speed flank milling. Int J Mach Tools Manuf 49:454–461

    Article  Google Scholar 

  34. Xia J, Ge QJ (2000) Kinematic approximation of ruled surfaces using nurbs motions of a cylindrical cutter. Proceeding of DETC’00, ASME 2000 Design Engineering Technical Conferences. Baltimore, Maryland

    Google Scholar 

  35. Zhang XM, Zhu LM, Zheng G, Ding H (2010) Tool path optimisation for flank milling ruled surface based on the distance function. Int J Prod Res 48:4233–4251

    Article  MATH  Google Scholar 

  36. Wu PH, Li YW, Chu CH (2008) Optimized tool path generation based on dynamic programming for five-axis flank milling of ruled surface. Int J Mach Tools Manuf 48:1224–1233

    Article  Google Scholar 

  37. Larue A, Anselmetti B (2003) Deviation of a machined surface in flank milling. Int J Mach Tools Manuf 14:795–805

    Google Scholar 

  38. Landon Y, Segonds S, Lascoumes P, Lagarrigue P (2004) Tool Positioning Error (TPE) characterisation in milling. Int J Mach Tools Manuf 44:457–464

    Article  Google Scholar 

  39. Senatore J, Landon Y, Rubio W (2008) Analytical estimation of error in flank milling of ruled surfaces. Comput Aided Des 40:595–603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Senatore, J., Moniès, F., Rubio, W. (2012). 5-Axis Flank Milling of Sculptured Surfaces. In: Davim, J. (eds) Machining of Complex Sculptured Surfaces. Springer, London. https://doi.org/10.1007/978-1-4471-2356-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2356-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2355-2

  • Online ISBN: 978-1-4471-2356-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics