Skip to main content

Flank Milling of Complex Surfaces

  • Chapter
  • First Online:
Book cover Machining of Complex Sculptured Surfaces

Abstract

In this chapter the main methods, machining strategies and possible problems when flank milling complex surfaces, are deeply explained. Flank milling is an operation defined by using large axial depth of cut with end milling tools, high cutting speed and relatively small radial depths of cut. This process is especially recommended for ruled surfaces machining, whose tangential contact of the involving cylinder with the cutting tool body is the key factor to define the tool paths. Due to the complexity of these kinds of surfaces, 5-axis milling is required taking special care of the geometrical interferences between the tool and the complex geometry of the pieces in order to avoid collisions. Finally, a new model for the prediction of roughness and dimensional accuracy on thin-walled component is presented, along with examples of parts with surfaces which need the flank milling operations due to their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi BK, Jerard RB (1998) Sculptured surface machining: theory and applications. Kluwer academic Publishers, Dordrecht

    Google Scholar 

  2. Senatore J, Monies F, Redonnet JM, Rubio W (2005) Analysis of improved posi-tioning in 5-axis ruled surface milling using envelop surface. Comput Aided Design 37:989–998

    Article  Google Scholar 

  3. Tönshoff HK, Gey C, Rackow N (2001) Flank milling optimization—the flamingo project. Air Space Eur 3:60–63

    Article  Google Scholar 

  4. Bedi S, Mann S, Menzel C (2003) Flank milling with flat end milling cutters. Comput Aided Design 35:293–300

    Google Scholar 

  5. Li C, Bedi S, Mann S (2006) Flank milling of ruled surface with conical tools-an optimization approach. Int J Adv Manuf Technol 29:1115–1124

    Article  Google Scholar 

  6. Lartigue C, Duc E, Affouard A (2003) Tool path deformation in 5-axis flank milling using envelop surface. Comput Aided Design 35:375–382

    Article  Google Scholar 

  7. Arnone M (1998) High performance machining. Hanser gardner publications, Cincinnati

    Google Scholar 

  8. King R (1985) Handbook of high speed machining technology. Chapman and hall advanced industrial technology series, New York

    Google Scholar 

  9. Lopez de Lacalle LN, Sanchez JA, Lamikiz A (2004) High performance machining (in Spanish) Ed Tec Izaro

    Google Scholar 

  10. Campshure KJ (1997) Mapping your way to 5-axis machining, modern machine shop. www.mmsonline.com

  11. Tlusty G (2000) Manufacturing processes and equipment. Prentice Hall, New Jersey

    Google Scholar 

  12. López de Lacalle LN, Lamikiz A, Sánchez JA, Salgado MA (2004) Effects of tool deflection in the high speed milling of inclined surfaces. Int J Adv Manuf Technol 24:621–631

    Article  Google Scholar 

  13. Kang MC, Kim KK, Lee DW, Kim JS, Kim NK (2001) Characterisation of inclided planes according to de the variations of cutting direction in high speed ball-end milling. Int J Adv Manuf Technol 17:323–329

    Article  Google Scholar 

  14. Salgado MA (2003) Verification of CNC programs. Report project UE/96, ETSI of Bilbao, Spain

    Google Scholar 

  15. López de Lacalle LN, Lamikiz A, Sánchez JA, Salgado MA (2007) Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int J Mach Tools Manuf 47:388–400

    Article  Google Scholar 

  16. Lee JJ, Suh SH (1998) Interference-free tool-path planning for flank milling of twisted ruled surfaces. Int J Adv Manuf Technol 14:795–805

    Article  Google Scholar 

  17. Warkentin A, Ismail F, Bedi S (2000) Multi point tool position strategy for 5-axis machining of sculptured surfaces. Comput Aided Geom Des 17(1):83–100

    Google Scholar 

  18. Lee JJ, Suh SH (1998) Interference-free tool-path planning for flank milling of twisted ruled surfaces. Int J Adv Manuf Technol 14:795–805

    Article  Google Scholar 

  19. Yown JW, Jun Y, Park S (2003) Interference-free tool path generation in 5-axis machining of a marine propeller. Int J Prod Res 41:4383–4402

    Article  Google Scholar 

  20. Lauwers B, Kiswanto G, Kruth JP, Leuven KU (2003) Development of a 5-axis milling tool path generation algorithm based on Faceted models. Ann CIRP 52:85–89

    Article  Google Scholar 

  21. Xu XJ, Bradley C, Zhang YF, Loh HT, Wong YS (2002) Tool-path generation for 5-axis machining of free-form surfaces based on accessibility analysis. Int J Prod Res 40:3253–3274

    Article  MATH  Google Scholar 

  22. Tsay DM, Yan WF, Ho HC (2001) Generation of 5-axis cutter paths for turbomachinery components. J Manuf Sci Eng Transact ASME 123:731–738

    Article  Google Scholar 

  23. Krajnik P, Kopac J (2004) Modern machining of die and mold tools. J Mater Process Technol 157–158:543–552

    Article  Google Scholar 

  24. Arizmendi M, Fernández J, López de Lacalle LN, Lamikiz A, Gil A, Sánchez JA, Campa FJ, Veiga F (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset: experimental validation. CIRP Ann Manuf Technol 57:101–104

    Article  Google Scholar 

  25. Salgado M, López de Lacalle LN, Lamikiz A, Muñoa M, Sánchez JA (2005) Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. Int J Mach Tools Manuf 45:727–739

    Article  Google Scholar 

  26. López de Lacalle LN, Lamikiz A, Salgado MA, Herranz S, Rivero A (2002) Process planning for reliable high speed machining of moulds. Int J Prod Res 40:2789–2809

    Article  Google Scholar 

  27. Denavit J, Hartenberg RS (1995) A kinematic notation for lower-pair mechanisms based on matrices. Transact ASME J Appl Mech 23:215–221

    Google Scholar 

  28. López de Lacalle LN, Lamikiz A, Sánches JA, Fernándes de Bustos I (2005) Recording of real cutting forces along the milling of complex parts. Mechatronics 16:21–32

    Article  Google Scholar 

  29. Smith S, Dvorak D (1998) Tool path strategies for high speed milling aluminum workpieces with thin webs. Mechatronics 8:291–300

    Article  Google Scholar 

  30. Rong Y, Tao R, Tang X (2000) Flexible fixturing with phase-change materials. Part 1: experimental study on magneto-rheological fluids. Int J Adv Manuf Technol 16:822–829

    Article  Google Scholar 

  31. Sims ND, Zhang Y (2004) Piezoelectric active control for workpiece chatter reduction during milling, smart structures and materials. In: Alison B (ed) Smart structures and integrated systems. Proc SPIE, 5390, 335–346

    Google Scholar 

  32. Budak E (2000) Improving productivity and part quality in milling of titanium based impellers by chatter suppression and force control. Ann CIRP 49(1):31--64

    Google Scholar 

  33. Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutter. Part I: helical end mills. Int J Mach Tools Manuf 41:2195–2212

    Article  Google Scholar 

  34. Lamikiz A, López de Lacalle LN, Sánchez JA, Salgado MA (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tools Manuf 44(14):1511–1526

    Google Scholar 

  35. Koenigsberger F, Tlusty J (1971) Structures of Machine Tools. Pergamon Press, Oxford

    Google Scholar 

  36. Merrit H (1965) Theory of self-excited machine tool chatter. J Eng Ind 87:447–454

    Article  Google Scholar 

  37. Budak E (1994) Mechanics and dynamics of milling thin walled structures. Ph.D. thesis, University of British Columbia

    Google Scholar 

  38. Bravo U, Altuzarra O, López de Lacalle LN, Sanchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45:1669–1680

    Article  Google Scholar 

  39. Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Integration of dynamic behaviour in stability lobes method: 3D lobes construction and application to thin walled structure milling. Int J Adv Manuf Technol 27:638–644

    Article  Google Scholar 

  40. Campa FJ, Lopez de Lacalle LN, Celaya A (2011) Chatter avoidance in the milling of thin floors with bull-nose end mills: model and stability diagrams. Int J Mach Tools Manuf 51:43–53

    Article  Google Scholar 

  41. Altintas Y (2000) Manufacturing automation. Cambridge University Press, Cambridge

    Google Scholar 

  42. Arizmendi M, Campa FJ, Fernández J, López de Lacalle LN, Gill A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann Manuf Technol 58:93–96

    Article  Google Scholar 

  43. Olvera D, López de Lacalle LN, Campa FJ, Lamikiz A (2010) In: Proceedings of effect of slenderness on machined surface: application to topography part prediction. Eighth international conference high speed machining

    Google Scholar 

  44. Quan L, Yongzhang W, Hongya F, Zhenyu H (2008) Cutting path planning for ruled surface impellers. Chin J Aeronaut 21:462–471

    Article  Google Scholar 

  45. Bohez ELJ, Ranjith Senadhera SD, Pole K, Duflou JR, Tar T (1997) A geometric modeling and 5-axis machining algorithm for centrifugal impellers. J Manuf Syst 16:422–436

    Article  Google Scholar 

Download references

Acknowledgments

Our thanks to Miguel Angel Salgado for the work performed in his Ph.D. Special thanks to Maestro Eduardo Sasia for his time dedicated to discuss several aspects of this chapter. Also special thanks are addressed to the ETORTEK pro-Future project. Special thanks to IBARMIA Innovatec and Tecnalia for their assistance during the test part development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. López de Lacalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Olvera, D., Calleja, A., López de Lacalle, L.N., Campa, F., Lamikiz, A. (2012). Flank Milling of Complex Surfaces. In: Davim, J. (eds) Machining of Complex Sculptured Surfaces. Springer, London. https://doi.org/10.1007/978-1-4471-2356-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2356-9_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2355-2

  • Online ISBN: 978-1-4471-2356-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics