Skip to main content

Left Invariant Evolution Equations on Gabor Transforms

  • Chapter
  • First Online:
Mathematical Methods for Signal and Image Analysis and Representation

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

Abstract

By means of the unitary Gabor transform one can relate operators on signals to operators on the space of Gabor transforms. In order to obtain a translation and modulation invariant operator on the space of signals, the corresponding operator on the reproducing kernel space of Gabor transforms must be left invariant, i.e. it should commute with the left regular action of the reduced Heisenberg group H r. By using the left invariant vector fields on H r and the corresponding left-invariant vector fields on phase space in the generators of our transport and diffusion equations on Gabor transforms we naturally employ the essential group structure on the domain of a Gabor transform. Here we mainly restrict ourselves to non-linear adaptive left-invariant convection (reassignment), while maintaining the original signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we explain in [118, Appendices B and C] the Gabor domain is a principal fiber bundle equipped with the Cartan connection form \(\omega_{g}(X_{g})= \langle\mathrm{d}s + \frac{1}{2}(p\,\mathrm{d}q -q\, \mathrm{d}p) , X_{g}\rangle\), or equivalently, it is a contact manifold, cf. [54, p. 6], [118, Appendix B, Definition B.14], .

  2. 2.

    The metric tensor is degenerate on H r, but we consider a contact manifold where tangent vectors along horizontal curves do not have an -component.

  3. 3.

    The induced frame operator can be efficiently diagonalized by Zak-transform, [235], boiling down to diagonalization of inverse Fourier transform on H r, [118, Chap. 2.3]. We used this in our algorithms.

References

  1. Akian, M., Quadrat, J., Viot, M.: Bellman Processes. Lecture Notes in Control and Information Science, vol. 199, pp. 302–311. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Auger, F., Flandrin, P.: Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)

    Article  Google Scholar 

  3. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. Mathematical Sciences Research Institute Publications, vol. 18. Springer, New York (1991)

    Book  Google Scholar 

  4. Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological systems. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space Methods in Computer Vision: Proceedings of the Fourth International Conference, Scale-Space 2003, Isle of Skye, UK, June 2003. Lecture Notes in Computer Science, vol. 2695, pp. 325–339. Springer, Berlin (2003)

    Chapter  Google Scholar 

  5. Chassande-Mottin, E., Daubechies, I., Auger, F., Flandrin, P.: Differential reassignment. IEEE Signal Process. Lett. 4(10), 293–294 (1997)

    Article  Google Scholar 

  6. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  7. Daudet, L., Morvidone, M., Torrésani, B.: Time-frequency and time-scale vector fields for deforming time-frequency and time-scale representations. In: Proceedings of the SPIE Conference on Wavelet Applications in Signal and Image Processing, pp. 2–15. SPIE, Bellingham (1999)

    Google Scholar 

  8. Dieudonné, J.: Treatise on Analysis, vol. 5. Academic Press, New York (1977). Translated by I.G. Macdonald, Pure and Applied Mathematics, vol. 10-V

    MATH  Google Scholar 

  9. Duits, R.: Perceptual organization in image analysis. PhD thesis, Eindhoven University of Technology, Department of Biomedical Engineering, The Netherlands (2005)

    Google Scholar 

  10. Duits, R., Burgeth, B.: Scale spaces on Lie groups. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision: Proceedings of the 1st International Conference, SSVM 2007, Ischia, Italy, May–June 2007. Lecture Notes in Computer Science, vol. 4485, pp. 300–312. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: Nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293–331 (2010)

    Article  Google Scholar 

  12. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255–292 (2010)

    Article  MathSciNet  Google Scholar 

  13. Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)

    Article  MathSciNet  Google Scholar 

  14. Duits, R., van Almsick, M.: The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group. Q. Appl. Math. 66, 27–67 (2008)

    Article  MathSciNet  Google Scholar 

  15. Duits, R., Felsberg, M., Granlund, G., ter Haar Romeny, B.M.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007)

    Article  Google Scholar 

  16. Duits, R., Führ, H., Janssen, B.J.: Left invariant evolution equations on Gabor transforms. Technical report CASA-report nr. 9, 2009, Department of Mathematics and Computer Science, Eindhoven University of Technology (2009)

    Google Scholar 

  17. Duits, R., Führ, H., Janssen, B.J., Bruurmijn, L.C.M.: Left invariant reassignment and diffusion on Gabor transforms. ACHA (2011, submitted)

    Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2002)

    Google Scholar 

  19. Franken, E.M.: Enhancement of crossing elongated structures in images. PhD thesis, Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands (2008). http://bmia.bmt.tue.nl/people/efranken/PhDThesisErikFranken.pdf

  20. Franken, E.M., Duits, R.: Crossing preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)

    Article  Google Scholar 

  21. Franken, E., Duits, R.: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)

    Article  Google Scholar 

  22. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  23. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Boston (2001)

    Book  Google Scholar 

  24. Helstrom, C.: An expansion of a signal in Gaussian elementary signals. IEEE Trans. Inf. Theory 12(1), 81–82 (1966)

    Article  Google Scholar 

  25. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  26. Janssen, A.J.E.M.: The Zak transform: a signal transform for sampled time-continuous signals. Philips J. Res. 43(1), 23–69 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Janssen, B.J.: Representation and manipulation of images based on linear functionals. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2009)

    Google Scholar 

  28. Kodera, K., de Villedary, C., Gendrin, R.: A new method for the numerical analysis of non-stationary signals. Phys. Earth Planet. Inter. 12(2–3), 142–150 (1976)

    Article  Google Scholar 

  29. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vols. 1–3. Springer, Berlin (1972–1973)

    Book  Google Scholar 

  30. Taylor, T.: A parametrix for step-two hypoelliptic diffusion equations. Trans. Am. Math. Soc. 296, 191–215 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco Duits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Duits, R., Führ, H., Janssen, B. (2012). Left Invariant Evolution Equations on Gabor Transforms. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_8

Download citation

Publish with us

Policies and ethics