Skip to main content

Structural Adaptive Smoothing: Principles and Applications in Imaging

  • Chapter
  • First Online:
Mathematical Methods for Signal and Image Analysis and Representation

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

  • 1603 Accesses

Abstract

Structural adaptive smoothing provides a new concept of edge-preserving non-parametric smoothing methods. In imaging it employs qualitative assumption on the underlying homogeneity structure of the image. The chapter describes the main principles of the approach and discusses applications ranging from image denoising to the analysis of functional and diffusion weighted Magnetic Resonance experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.J.: On excursion sets, tube formulae, and maxima of random fields. Ann. Appl. Probab. 10(1), 1–74 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Adler, D., Nenadić, O., Zucchini, W.: RGL: a R-library for 3D visualization with OpenGL. In: Braverman, A. (ed.) Proceedings of the 35th Symposium on the Interface: Computing Science and Statistics 2003 Security and Infrastructure Protection, Interface 2003, Salt Lake City, USA, March 12–15, 2003. Computing Science and Statistics, vol. 35. Curran Associates, Rostrevor (2003)

    Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  4. Basser, P.J., Pajevic, S.: Statistical artefacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn. Reson. Med. 44(1), 41–50 (2000)

    Google Scholar 

  5. Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Google Scholar 

  6. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. 103, 247–254 (1994)

    Google Scholar 

  7. Basu, S., Fletcher, T., Whitaker, R.: Rician noise removal in diffusion tensor MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006, Copenhagen, Denmark, October 1–6, 2006. Lecture Notes in Computer Science, vol. 4190–4191, pp. 117–125. Springer, Berlin (2006)

    Google Scholar 

  8. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  9. Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954)

    Google Scholar 

  10. Chaudhuri, P., Marron, J.S.: Scale space view of curve estimation. Ann. Stat. 28(2), 408–428 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, K., Waggoner, R.A., Tanaka, K.: Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32(2), 359–374 (2001)

    Google Scholar 

  12. CIBC: Data sets: NCRR Center for Integrative Biomedical Computing (CIBC) data set archive. http://www.sci.utah.edu/cibc/software/login_datasets.html (2008)

  13. Clark, C.A., Le Bihan, D.: Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn. Reson. Med. 44(6), 852–859 (2000)

    Google Scholar 

  14. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Google Scholar 

  15. Ding, Z., Gore, J.C., Anderson, A.W.: Reduction of noise in diffusion tensor images using anisotropic smoothing. Magn. Reson. Med. 53(2), 485–490 (2005)

    Google Scholar 

  16. Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)

    Article  MathSciNet  Google Scholar 

  17. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Chapman & Hall, London (1996)

    MATH  Google Scholar 

  18. Felsberg, M., Forssén, P.-E., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 209–222 (2006)

    Google Scholar 

  19. Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans. Med. Imaging 26(11) (2007)

    Google Scholar 

  20. Fletcher, P.T.: Statistical variability in nonlinear spaces: application to shape analysis and DT-MRI. PhD thesis, University of North Carolina at Chapel Hill (2004)

    Google Scholar 

  21. Frank, L.R.: Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 45(6), 935–939 (2001)

    Google Scholar 

  22. Franken, E.M.: Enhancement of crossing elongated structures in images. PhD thesis, Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands (2008). http://bmia.bmt.tue.nl/people/efranken/PhDThesisErikFranken.pdf

  23. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-B., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995)

    Google Scholar 

  24. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Google Scholar 

  25. Hahn, K., Prigarin, S., Heim, S., Hasan, K.: Random noise in diffusion tensor imaging, its destructive impact and some corrections. In: Weickert, J., Hagen, H. (eds.) Visualization and Image Processing of Tensor Fields. Mathematics and Visualization, pp. 1–13. Springer, Berlin (2006)

    Google Scholar 

  26. Heim, S., Fahrmeir, L., Eilers, P.H.C., Marx, B.D.: 3D space-varying coefficient models with application to diffusion tensor imaging. Comput. Stat. Data Anal. 51(12), 6212–6228 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37, 164–176 (2007)

    Google Scholar 

  28. Jones, D.K., Basser, P.J.: “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52(5), 979–993 (2004)

    Google Scholar 

  29. Kleinschmidt, A.: Different analysis solutions for different spatial resolutions? Moving towards a mesoscopic mapping of functional architecture in the human brain. NeuroImage 38(4), 663–665 (2007)

    Google Scholar 

  30. Kriegeskorte, N., Bandettini, P.: Analyzing for information, not activation, to exploit high-resolution fMRI. NeuroImage 38(4), 649–662 (2007)

    Google Scholar 

  31. Lange, N.: Statistical approaches to human brain mapping by functional magnetic resonance imaging. Stat. Med. 15(4), 389–428 (1996)

    Google Scholar 

  32. Lange, N., Zeger, S.L.: Non-linear fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J. R. Stat. Soc., Ser. C, Appl. Stat. 46(1), 1–29 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Lazar, N.A.: The Statistical Analysis of Functional MRI Data. Statistics for Biology and Health. Springer, Berlin (2008)

    MATH  Google Scholar 

  34. Le Bihan, D., Breton, E.: Imagerie de diffusion in vivo par résonance magnétique nucléaire. C. R. Acad. Sci. 301, 1109–1112 (1985)

    Google Scholar 

  35. Lee, J.S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Google Scholar 

  36. Lee, J.H., Chung, M.K., Oakes, T.E., Alexander, A.L.: Anisotropic Gaussian kernel smoothing of DTI data. In: Proceedings of the 13th International Society for Magnetic Resonance in Medicine, ISMRM, Miami, USA, May 7–13, 2005, p. 2253. International Society for Magnetic Resonance in Medicine, Berkeley (2005)

    Google Scholar 

  37. Leow, A.D., Zhu, S., McMahon, K., de Zubicaray, G.I., Meredith, M.J., Wright, M.J., Toga, A.W., Thompson, P.M.: The tensor distribution function. Magn. Reson. Med. 61(1), 205–214 (2009)

    Google Scholar 

  38. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L., Corbetta, M.: Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. 104(32), 13170–13175 (2007)

    Google Scholar 

  39. Merboldt, K.-D., Hanicke, W., Frahm, J.: Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. 64(3), 479–486 (1985)

    Google Scholar 

  40. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)

    Google Scholar 

  41. Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. 89(13), 5951–5955 (1992)

    Google Scholar 

  42. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Google Scholar 

  43. Parker, G.J., Schnabel, J.A., Symms, M.R., Werring, D.J., Barker, G.J.: Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. J. Magn. Reson. Imaging 11(6), 702–710 (2000)

    Google Scholar 

  44. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    MATH  Google Scholar 

  45. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  46. Polzehl, J., Spokoiny, V.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc., Ser. B, Stat. Methodol. 62(2), 335–354 (2000)

    Article  MathSciNet  Google Scholar 

  47. Polzehl, J., Spokoiny, V.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields 135(3), 335–362 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Polzehl, J., Spokoiny, V.: Structural adaptive smoothing by propagation-separation methods. In: Chen, C., Härdle, W., Unwin, A. (eds.) Handbook of Data Visualization. Springer Handbooks of Computational Statistics, pp. 471–492. Springer, Berlin (2008)

    Google Scholar 

  49. Polzehl, J., Tabelow, K.: Adaptive smoothing of digital images: the R package adimpro. J. Stat. Softw. 19(1), 1–17 (2007)

    Google Scholar 

  50. Polzehl, J., Tabelow, K.: fMRI: a package for analyzing fMRI data. R News 7(2), 13–17 (2007)

    Google Scholar 

  51. Polzehl, J., Tabelow, K.: Structure adaptive smoothing diffusion tensor imaging data: the R package DTI. Preprint 1382, WIAS (2008)

    Google Scholar 

  52. R Development Core Team: R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna (2005). ISBN3-900051-07-0

    Google Scholar 

  53. Simonoff, J.: Smoothing Methods in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

  54. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Comput. Phys. 42, 288–292 (1965)

    Google Scholar 

  55. Tabelow, K., Polzehl, J., Voss, H.U., Spokoiny, V.: Analyzing fMRI experiments with structural adaptive smoothing procedures. NeuroImage 33(1), 55–62 (2006)

    Google Scholar 

  56. Tabelow, K., Polzehl, J., Spokoiny, V., Voss, H.U.: Diffusion tensor imaging: structural adaptive smoothing. NeuroImage 39(4), 1763–1773 (2008)

    Google Scholar 

  57. Tabelow, K., Polzehl, J., Ulug, A.M., Dyke, J.P., Heier, L.A., Voss, H.U.: Accurate localization of functional brain activity using structure adaptive smoothing. IEEE Trans. Med. Imaging 27(4), 531–537 (2008)

    Google Scholar 

  58. Tabelow, K., Piëch, V., Polzehl, J., Voss, H.U.: High-resolution fMRI: overcoming the signal-to-noise problem. J. Neurosci. Methods 178(2), 357–365 (2009)

    Google Scholar 

  59. Taylor, D.G., Bushell, M.C.: The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys. Med. Biol. 30(4), 345–349 (1985)

    Google Scholar 

  60. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 6th International Conference on Computer Vision, Bombay, India, January 4–7, 1998, pp. 839–846. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  61. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Google Scholar 

  62. Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: Proceedings of the 7th International Society for Magnetic Resonance in Medicine, ISMRM, Pennsylvania, USA, May 24–28, 1999, p. 321. International Society for Magnetic Resonance in Medicine, Berkeley (1999)

    Google Scholar 

  63. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40(5), 885–895 (2003)

    Google Scholar 

  64. Voss, H.U., Tabelow, K., Polzehl, J., Tchernichovski, O., Maul, K.K., Salgado-Commissariat, D., Ballon, D., Helekar, S.A.: Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography. Proc. Natl. Acad. Sci. 104(25), 10667–10672 (2007)

    Google Scholar 

  65. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  66. Weickert, J.A.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  67. Westin, C.-F., Maier, S.E., Khidhir, B., Everett, P., Jolesz, F.A., Kikinis, R.: Image processing for diffusion tensor magnetic resonance imaging. In: Taylor, C.J., Colchester, A.C.F. (eds.) Proceedings of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 1999, Cambridge, UK, September 19–22, 1999. Lecture Notes in Computer Science, vol. 1679, pp. 441–452. Springer, Berlin (1999)

    Google Scholar 

  68. Worsley, K.J.: Local maxima and the expected Euler characteristic of excursion sets of χ 2, f and t fields. Adv. Appl. Probab. 26(1), 13–42 (1994)

    Article  MathSciNet  Google Scholar 

  69. Worsley, K.J.: Detecting activation in fMRI data. Stat. Methods Med. Res. 12(5), 401–418 (2003)

    MathSciNet  MATH  Google Scholar 

  70. Worsley, K.J., Friston, K.J.: Analysis of fMRI time series revisited—again. NeuroImage 2(3), 173–181 (1995)

    Google Scholar 

  71. Worsley, K.J., Liao, C., Aston, J.A.D., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.: A general statistical analysis for fMRI data. NeuroImage 15(1), 1–15 (2002)

    Google Scholar 

  72. Yoshiura, T., Mihara, F., Tanaka, A., Ogomori, K., Ohyagi, Y., Taniwaki, T., Yamada, T., Yamasaki, T., Ichimiya, A., Kinukawa, N., Kuwabara, Y., Honda, H.: High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer’s disease. NeuroImage 20(1), 413–419 (2003)

    Google Scholar 

  73. Zhang, F., Hancock, E.R.: Riemannian graph diffusion for DT-MRI regularization. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006, Copenhagen, Denmark, October 1–6, 2006. Lecture Notes in Computer Science, vols. 4190–4191, pp. 234–242. Springer, Berlin (2006)

    Google Scholar 

  74. Zhang, F., Hancock, E.R.: Smoothing tensor-valued images using anisotropic geodesic diffusion. In: Yeung, D.-Y., Kwok, J.T., Roli, F., Fred, A., de Ridder, D. (eds.) Proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, SSPR 2006 and SPR 2006, Hong Kong, China, August 17–19, 2006. Lecture Notes in Computer Science, vol. 4109. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the DFG Research Center Matheon. It was made possible in part by software and a dataset from the NIH/NCRR Center for Integrative Biomedical Computing, P41-RR12553. The authors would like to thank A. Anwander at the Max Planck Institute for Human Cognitive and Brain Sciences (Leipzig, Germany) and H.U. Voss at the Citigroup Biomedical Imaging Center, Weill Cornell Medical College for providing diffusion-weighted and functional MR datasets. Furthermore, the authors would like to thank H.U. Voss for numerous intense and helpful discussions on Magnetic Resonance Imaging and related issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Polzehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Polzehl, J., Tabelow, K. (2012). Structural Adaptive Smoothing: Principles and Applications in Imaging. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_4

Download citation

Publish with us

Policies and ethics