Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

Abstract

This contribution aims to give a basic introduction to diffusion-like methods. There are many different methods commonly used for regularization tasks. Some of them will be briefly introduced and their connection to diffusion shown. In addition to this we will go into some detail for diffusion-like methods in a narrower sense, i.e. methods based on PDEs similar to diffusion PDEs known from physics. Main issues highlighted here are which PDE to use, how diffusivities in such a PDE are constructed, and which discretization is suitable for a given task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considering e.g. Poisson or shot noise and low intensities, this is not a good approximation.

  2. 2.

    Diffusivities calculated by e.g. Tuckey or Cup functions may become 0 and thus a diffusion tensor based on them is not guaranteed to be positive definite, but positive semi-definite.

  3. 3.

    In the case of an image, where r j are spatially distributed on the pixel grid this is of course a smoothness assumption on the underlying signal s.

  4. 4.

    Optical flow is derived as ratio of the first and third, and second and third components of the eigenvector e 3 to the smallest eigenvalue μ 3 of a structure tensor calculated from a spatio-temporal gradient.

References

  1. Acton, S.T.: Multigrid anisotropic diffusion. IEEE Trans. Image Process. 7(3), 280–291 (1998)

    MathSciNet  Google Scholar 

  2. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung 1995. Proceedings of the 17th DAGM-Symposium, Bielefeld, Germany, September 13–15, 1995. Informatik Aktuell, pp. 538–545. Springer, Berlin (1995)

    Google Scholar 

  3. Bänsch, E., Mikula, K.: A coarsening finite element strategy in image selective smoothing. Comput. Vis. Sci. 1(1), 53–61 (1997)

    MATH  Google Scholar 

  4. Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 844–847 (2002)

    Google Scholar 

  5. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004)

    Google Scholar 

  6. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Google Scholar 

  7. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the 1st International Conference on Computer Vision, London, UK, June 8–11, 1987, pp. 433–438. IEEE Computer Society, Los Alamitos (1987)

    Google Scholar 

  8. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)

    Google Scholar 

  9. Blake, A., Zisserman, A.: Visual Reconstruction. The MIT Press Series in Artificial Intelligence. MIT Press, Cambridge (1987)

    Google Scholar 

  10. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(3) (1992)

    MathSciNet  MATH  Google Scholar 

  12. Chu, C.K., Glad, I.K., Godtliebsen, F., Marron, J.S.: Edge-preserving smoother for image processing. J. Am. Stat. Assoc. 93(442), 526–541 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Google Scholar 

  14. Cottet, G.H., El Ayyadi, M.: A Volterra type model for image processing. IEEE Trans. Image Process. 7(3), 292–303 (1998)

    Google Scholar 

  15. Cottet, G.H., Germain, L.: Image processing through reaction combined with non-linear diffusion. Math. Comput. 61(204), 659–673 (1993)

    MATH  Google Scholar 

  16. Dressel, A.: Die nichtlineare Diffusion in der Bildverarbeitung. Master’s thesis, Faculty of Mathematics, University of Heidelberg, Germany (1999)

    Google Scholar 

  17. Duits, R., Franken, E.M.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92(3), 231–264 (2011)

    Article  MathSciNet  Google Scholar 

  18. Felsberg, M., Forssén, P.-E., Scharr, H.: Channel smoothing: efficient robust smoothing of low-level signal features. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 209–222 (2006)

    Google Scholar 

  19. Fick, A.: Ueber diffusion. Ann. Phys. 170(1), 59 (1855)

    Google Scholar 

  20. Fillard, P., Arsigny, V., Ayache, N., Pennec, X.: A Riemannian framework for the processing of tensor-valued images. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) Deep Structure Singularities and Computer Vision. Lecture Notes in Computer Science, vol. 3753, pp. 112–123. Springer, Berlin (2005)

    MATH  Google Scholar 

  21. Florack, L.M.J., Salden, A.H., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Nonlinear scale-space. Image Vis. Comput. 13(4), 279–294 (1995). Published in the Promising Research Direction Track

    Google Scholar 

  22. Florack, L., Balmashnova, E., Astola, L., Brunenberg, E.: A new tensorial framework for single-shell high angular resolution diffusion imaging. J. Math. Imaging Vis. 3(38), 171–181 (2010). Published online: doi:10.1007/s10851-010-0217-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Frangakis, A.S., Hegerl, R.: Nonlinear anisotropic diffusion in three-dimensional electron microscopy. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space Theories in Computer Vision: Proceedings of the 2nd International Conference, Scale-Space’99, Corfu, Greece, September 1999. Lecture Notes in Computer Science, vol. 1682, pp. 386–397. Springer, Berlin (1999)

    Google Scholar 

  24. Fröhlich, J., Weickert, J.: Image processing using a wavelet algorithm for nonlinear diffusion. Technical report 104, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany (1994)

    Google Scholar 

  25. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 711–741 (1984)

    MATH  Google Scholar 

  26. Godtliebsen, F., Spjøtvoll, E., Marron, J.S.: A nonlinear Gaussian filter applied to images with discontinuities. J. Nonparametr. Stat. 8(1), 21–43 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Iijima, T.: Basic theory of pattern observation. Papers of Technical Group on Automata and Automatic Control, IECE, Japan (1959)

    Google Scholar 

  28. Jawerth, B., Lin, P., Sinzinger, E.: Lattice Boltzmann models for anisotropic diffusion of images. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space Theories in Computer Vision: Proceedings of the 2nd International Conference, Scale-Space’99, Corfu, Greece, September 1999. Lecture Notes in Computer Science, vol. 1682, pp. 283–293. Springer, Berlin (1999)

    Google Scholar 

  29. Kimmel, R., Malladi, R., Sochen, N.: Image processing via the Beltrami operator. In: Chin, R.T., Pong, T.-C. (eds.) Proceedings of the 3rd Asian Conference on Computer Vision, Hong Kong, China, January 8–10, 1998. Lecture Notes in Computer Science, vol. 1351–1352, pp. 574–581. Springer, Berlin (1997)

    Google Scholar 

  30. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts Magn. Reson., Part A 28A(2), 123–154 (2006)

    Google Scholar 

  31. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concepts Magn. Reson., Part A 28A(2), 155–179 (2006)

    Google Scholar 

  32. Kingsley, P.B.: Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concepts Magn. Reson., Part A 28A(2), 101–122 (2006)

    Google Scholar 

  33. Krajsek, K., Menzel, M.I., Zwanger, M., Scharr, H.: Riemannian anisotropic diffusion for tensor valued images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Proceedings of the 10th European Conference on Computer Vision, Marseille, France, October 12–18, 2008. Lecture Notes in Computer Science, vols. 5302–5305, pp. 326–339. Springer, Berlin (2008)

    Google Scholar 

  34. Krajsek, K., Mester, R., Scharr, H.: Statistically optimal averaging for image restoration and optical flow estimation. In: Rigoll, G. (ed.) Pattern Recognition. Proceedings of the 30th DAGM-Symposium, Munich, Germany, June 10–13, 2008. Lecture Notes in Computer Science, vol. 5096, pp. 466–475. Springer, Berlin (2008)

    Google Scholar 

  35. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  36. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    MATH  Google Scholar 

  38. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  39. Pizarro, L., Burgeth, B., Didas, S., Weickert, J.: A generic neighbourhood filtering framework for matrix fields. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Proceedings of the 10th European Conference on Computer Vision, Marseille, France, October 12–18, 2008. Lecture Notes in Computer Science, vols. 5302–5305, pp. 521–532. Springer, Berlin (2008)

    Google Scholar 

  40. Portilla, J., Strela, V., Wainwright, J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Preußer, T., Rumpf, M.: An adaptive finite element method for large scale image processing. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space Theories in Computer Vision: Proceedings of the 2nd International Conference, Scale-Space’99, Corfu, Greece, September 1999. Lecture Notes in Computer Science, vol. 1682, pp. 223–234. Springer, Berlin (1999)

    Google Scholar 

  42. Ranjan, U.S., Ramakrishnan, K.R.: A stochastic scale space for multiscale image representation. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space Theories in Computer Vision: Proceedings of the 2nd International Conference, Scale-Space’99, Corfu, Greece, September 1999. Lecture Notes in Computer Science, vol. 1682, pp. 441–446. Springer, Berlin (1999)

    Google Scholar 

  43. Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California, USA, June 20–25, 2005, pp. 860–867. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  44. Roth, S., Black, M.J.: Steerable random fields. In: Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, October 14–20, 2007, pp. 1–8. IEEE Computer Society, Los Alamitos (2007). Digital proceedings by Omnipress

    Google Scholar 

  45. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. In: Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science, pp. 259–268. Elsevier/North-Holland, Amsterdam (1992)

    Google Scholar 

  46. Scharr, H.: Diffusion-like reconstruction schemes from linear data models. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Mustererkennung 2006. Proceedings of the 28th DAGM-Symposium, Berlin, Germany, September 12–14, 2000. Lecture Notes in Computer Science, vol. 4174, pp. 51–60. Springer, Berlin (2006)

    Google Scholar 

  47. Scharr, H.: Optimal second order derivative filter families for transparent motion estimation. In: Proceedings of the 15th European Signal Processing Conference, Poznan, Poland, September 3–7, 2007, pp. 302–306. EURASIP (2007)

    Google Scholar 

  48. Scharr, H.: Optimal filters for extended optical flow. In: Jähne, B., Barth, E., Mester, R., Scharr, H. (eds.) Proceedings of the 1st International Workshop on Complex Motion, IWCM 2004, Gunzburg, Germany, October 12–14, 2004. Lecture Notes in Computer Science, vol. 3417, pp. 14–29. Springer, Berlin (2007)

    Google Scholar 

  49. Scharr, H., Spies, H.: Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion. Signal Process. Image Commun. 20(6), 537–553 (2005)

    Google Scholar 

  50. Scharr, H., Weickert, H.: An anisotropic diffusion algorithm with optimized rotation invariance. In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennung 2000. Proceedings of the 22nd DAGM-Symposium, Kiel, Germany, September 13–15, 2000. Informatik Aktuell, pp. 460–467. Springer, Berlin (2000)

    Google Scholar 

  51. Scharr, H., Black, M.J., Haussecker, H.W.: Image statistics and anisotropic diffusion. In: Proceedings of the 9th International Conference on Computer Vision, Nice, France, October 13–16, 2003, pp. 840–847. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  52. Schnörr, C.: A study of a convex variational diffusion approach for image segmentation and feature extraction. J. Math. Imaging Vis. 8(3), 271–292 (1998)

    MathSciNet  MATH  Google Scholar 

  53. Schnörr, C., Weickert, J.: Variational image motion computation: theoretical framework, problems and perspectives. In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennung 2000. Proceedings of the 22nd DAGM-Symposium, Kiel, Germany, September 13–15, 2000. Informatik Aktuell, pp. 476–488. Springer, Berlin (2000)

    Google Scholar 

  54. Schultz, T., Burgeth, B., Weickert, J.: Flexible segmentation and smoothing of DT-MRI fields through a customizable structure tensor. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) Advances in Visual Computing. Proceedings of the 2nd International Symposium, ISVC 2006, Lake Tahoe, NV, USA, November 6–8, 2006. Lecture Notes in Computer Science, vols. 4291–4292, pp. 454–464. Springer, Berlin (2006)

    Google Scholar 

  55. Stuke, I., Aach, T., Barth, E., Mota, C.: Analysing superimposed oriented patterns. In: Proceedings of the 6th IEEE Southwest Symposium on Image Analysis and Interpretation, SSIAI 2004, Lake Tahoe, Nevada, USA, March 28–30, 2004, pp. 133–137. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  56. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 6th International Conference on Computer Vision, Bombay, India, January 4–7, 1998, pp. 839–846. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  57. Tschumperle, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, June 16–22, 2003, pp. 651–656. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  58. Weickert, J.: Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Technical report, Laboratory of Technomathematics, University of Kaiserslautern, Kaiserslautern, Germany (1994)

    Google Scholar 

  59. Weickert, J.A.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  60. Weickert, J.: Nonlinear diffusion filtering. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook on Computer Vision and Applications, Signal Processing and Pattern Recognition, vol. 2, pp. 423–450. Academic Press, San Diego (1999)

    Google Scholar 

  61. Weickert, J.A.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)

    Google Scholar 

  62. Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13(1–2), 103–118 (2002). Special Issue on Partial Differ. Equ. Image Process., Comput. Vis. Comput. Graph.

    Google Scholar 

  63. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE—based computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

    MATH  Google Scholar 

  64. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Google Scholar 

  65. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)

    MathSciNet  MATH  Google Scholar 

  66. Welk, M., Weickert, J., Steidl, G.: From tensor-driven diffusion to anisotropic wavelet shrinkage. In: Leonardis, A., Bischof, H., Prinz, A. (eds.) Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, May 2006. Lecture Notes in Computer Science, vols. 3951–3954, pp. 391–403. Springer, Berlin (2006)

    Google Scholar 

  67. Weule, J.: Iteration Nichtlinearer Gauß-filter in der Bildverarbeitung. PhD thesis, Heinrich Heine Universität Düsseldorf (1994)

    Google Scholar 

  68. Winkler, G., Aurich, V., Hahn, K., Martin, A., Rodenacker, K.: Noise reduction in images: some recent edge-preserving methods. Technical report, Sonderforschungsbereich 386, Paper 138 (1998)

    Google Scholar 

  69. Witkin, A.P.: Scale-space filtering. In: Proceedings of the International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019–1022 (1983)

    Google Scholar 

  70. Zhu, S.C., Mumford, D.: Prior learning and Gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1236–1250 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Scharr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Scharr, H., Krajsek, K. (2012). A Short Introduction to Diffusion-Like Methods. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_1

Download citation

Publish with us

Policies and ethics