Advertisement

Exercise Programming and Control System of the Leg Rehabilitation Robot RRH1

Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 422)

Abstract

A robot for rehabilitation of the lower extremities has been developed at the Technical University of Łódź (TUL) to allow early treatment of patients after injury or in coma. The device is designed to exercise patients lying in their beds and can fit most of hospital appliances. The main advantage over existing similar solutions is that it provides simultaneous two-plane motion exercises for the knee and the hip. One of the methods for programming the exercises is following the therapist’s movements and recording trajectories. Compliance control applied to each axis allows detecting the patient’s force counteraction and muscle spasticity. Additionally, various protection systems that allow the robot to be used for rehabilitation therapy of persons with locomotive disabilities are presented.

Keywords

Local Controller Main Controller Distribute Control System Rehabilitation Robot Repeat Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S.K., Banala, S.K., Mankala, K., Sangwan, V., Scholz, J.P., Krishnamoorthy, V., Hsu, W.-L.: Exoskeletons for gait assistance and training of the motor-impaired. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 1108–1113 (2007)Google Scholar
  2. 2.
    Banala, S.K., Agrawal, S.K., Scholz, J.P.: Active leg exoskeleton (alex) for gait rehabilitation of motor-impaired patients. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 401–407 (2007)Google Scholar
  3. 3.
    Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (alex) 17(1), 2–8 (2009)Google Scholar
  4. 4.
    Chou, C.-P., Hannaford, B.: Measurement and modeling of mckibben pneumatic artificial muscles 12(1), 90–102 (1996)Google Scholar
  5. 5.
    Colombo, G., Jorg, M., Dietz, V.: Driven gait orthosis to do locomotor training of paraplegic patients. In: Proc. 22nd Annual Int. Engineering in Medicine and Biology Society Conf. of the IEEE, vol. 4, pp. 3159–3163 (2000)Google Scholar
  6. 6.
    Ekkelenkamp, R., Veneman, J., van der Kooij, H.: Lopes: a lower extremity powered exoskeleton. In: Proc. IEEE Int. Robotics and Automation Conf., pp. 3132–3133 (2007)Google Scholar
  7. 7.
    Ferris, D.P., Lewis, C.L.: Robotic lower limb exoskeletons using proportional myoelectric control. In: Proc. Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society EMBC 2009, pp. 2119–2124 (2009)Google Scholar
  8. 8.
    Hogan, N.: Impedance control: An approach to manipulation. In: Proc. American Control Conf., pp. 304–313 (1984)Google Scholar
  9. 9.
    Homma, K., Fukuda, O., Nagata, Y.: Study of a wire-driven leg rehabilitation system. In: Proc. IEEE/RSJ Int. Intelligent Robots and Systems Conf., vol. 2, pp. 1451–1456 (2002)Google Scholar
  10. 10.
    Homma, K., Fukuda, O., Sugawara, J., Nagata, Y., Usuba, M.: A wire-driven leg rehabilitation system: development of a 4-dof experimental system. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics AIM 2003, vol. 2, pp. 908–913 (2003)Google Scholar
  11. 11.
    Iwata, H., Yano, H., Nakaizumi, F.: Gait master: a versatile locomotion interface for uneven virtual terrain. In: Proc. IEEE Virtual Reality, pp. 131–137 (2001)Google Scholar
  12. 12.
    Kaczmarski, M., Czapiewski, M., Mianowski, K., Granosik, G.: Robot rehabilitacyjny RRH1. In: Proceedings of XI Krajowa Konferencja Robotyki (2010) (in Polish)Google Scholar
  13. 13.
    Kaczmarski, M., Granosik, G.: Rehabilitation robot RRH1. In: The Archive of Mechanical Engineering, vol. LVIII, pp. 103–113 (2011)Google Scholar
  14. 14.
    Klimasara, W.J., Dunaj, J., Stempniak, P., Pilat, Z.: Zrobotyzowane systemy renus-1 oraz renus-2 do wspomagania rehabilitacji ruchowej po udarach mózgu. In: Proceedings of XI Krajowa Konferencja Robotyki (2010) (in Polish)Google Scholar
  15. 15.
    Lunenburger, L., Colombo, G., Riener, R., Dietz, V.: Biofeedback in gait training with the robotic orthosis lokomat. In: Proc. 26th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society IEMBS 2004, vol. 2, pp. 4888–4891 (2004)Google Scholar
  16. 16.
    Novandy, B., Yoon, J., Manurung, A.: Interaction control of a programmable footpad-type gait rehabilitation robot for active walking on various terrains. In: Proc. IEEE Int. Conf. Rehabilitation Robotics, ICORR 2009, pp. 372–377 (2009)Google Scholar
  17. 17.
    Salter, R.: The biologic concept of continuous passive motion of synovial joints: The first 18 years of basic research and its clinical application. Clinical Orthopaedics and Related Research 12(2), 242 (1989)Google Scholar
  18. 18.
    Schmidt, H., Sorowka, D., Hesse, S., Bernhardt, R.: Robotic walking simulator for neurological gait rehabilitation. In: Proc. Second Joint (Engineering in Medicine and Biology 24th Annual Conf. and the Annual Fall Meeting of the Biomedical Engineering Society) EMBS/BMES Conf., vol. 3, pp. 2356–2357 (2002)Google Scholar
  19. 19.
    Schmidt, H., Volkmar, M., Werner, C., Helmich, I., Piorko, F., Kruger, J., Hesse, S.: Muscle activation patterns of healthy subjects during floor walking and stair climbing on an end-effector-based gait rehabilitation robot. In: Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, pp. 1077–1084 (2007)Google Scholar
  20. 20.
    Sun, J.Q., Rudolph, K., Dong, S., Lu, K.-Q.: Rehabilitation device with variable resistance and intelligent control. Medical Engineering & Physics, 249–255 (2005)Google Scholar
  21. 21.
    Tondu, B., Lopez, P.: Modeling and control of mckibben artificial muscle robot actuators 20(2), 15–38 (2000)Google Scholar
  22. 22.
    Young, J.A., Tolentino, M.: Neuroplasticity and its applications for rehabilitation. American Journal of Therapeutics, December 29 (2010)Google Scholar

Copyright information

© Springer London 2012

Authors and Affiliations

  1. 1.Institute of Automatic ControlTechnical University of ŁódźŁódźPoland

Personalised recommendations