Skip to main content

Manipulating Ergodic Bodies through Gentle Guidance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 422))

Abstract

This paper proposes methods for achieving basic tasks such as navigation, patrolling, herding, and coverage by exploiting the wild motions of very simple bodies in the environment. Bodies move within regions that are connected by gates that enforce specific rules of passage. Common issues such as dynamical system modeling, precise state estimation, and state feedback are avoided. The method is demonstrated in a series of experiments that manipulate the flow of weasel balls (without the weasels) and Hexbug Nano vibrating bugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akella, S., Huang, W.H., Lynch, K.M., Mason, M.T.: Sensorless parts feeding with a one joint robot. In: Laumond, J.-P., Overmars, M. (eds.) Algorithms for Robotic Motion and Manipulation, pp. 229–237. A.K. Peters, Wellesley (1997)

    Google Scholar 

  2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  3. Bell, M., Balkcom, D.: Knot tying with single piece fixtures. In: IEEE International Conference on Robotics and Automation, pp. 4429–4436 (2008)

    Google Scholar 

  4. Berretty, R.-P., Goldberg, K., Overmars, M.H., van der Stappen, A.F.: On fence design and the complexity of push plans for orienting parts. In: ACM Symposium on Computational Geometry, pp. 21–29 (1997)

    Google Scholar 

  5. Böhringer, K.-F., Bhatt, V., Donald, B.R., Goldberg, K.: Algorithms for sensorless manipulation using a vibrating surface. Algorithmica 26, 389–429 (2000)

    Article  MathSciNet  Google Scholar 

  6. Bohringer, K.F., Donald, B.R., Mihailovich, R., MacDonald, N.C.: Sensorless manipulation using massively parallel microfabricated actuator arrays. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 826–833 (1994)

    Google Scholar 

  7. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. International Journal of Robotics Research 18(6), 534–555 (1999)

    Article  Google Scholar 

  8. Butler, Z., Corke, P., Peterson, R., Rus, D.: Virtual fences for controlling cows. In: IEEE International Conference on Robotics and Automation, pp. 4429–4436 (2004)

    Google Scholar 

  9. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network models for building evacuation. Fire Technology 18(1), 90–113 (1982)

    Article  Google Scholar 

  10. Erdmann, M.A.: Randomization in robot tasks. International Journal of Robotics Research 11(5), 399–436 (1992)

    Article  Google Scholar 

  11. Erdmann, M.A.: An exploration of nonprehensile two-palm manipulation using two zebra robots. In: Laumond, J.-P., Overmars, M. (eds.) Algorithms for Robotic Motion and Manipulation, pp. 239–254. A.K. Peters, Wellesley (1997)

    Google Scholar 

  12. Erdmann, M.A., Mason, M.T.: An exploration of sensorless manipulation. IEEE Transactions on Robotics & Automation 4(4), 369–379 (1988)

    Article  Google Scholar 

  13. Fierro, R., Das, A., Kumar, V., Ostrowski, J.P.: Hybrid control of formations of robots. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 157–162 (2001)

    Google Scholar 

  14. Frazzoli, E., Dahleh, M.A., Feron, E.: Robust hybrid control for autonomous vehicles motion planning. Technical Report LIDS-P-2468, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology (1999)

    Google Scholar 

  15. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10, 201–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klavins, E.: Toward the control of self-assembling systems. In: Bicchi, A., Christensen, H.I., Prattichizzo, D. (eds.) Control Problems in Robotics, pp. 153–168. Springer, Berlin (2002)

    Google Scholar 

  17. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), http://planning.cs.uiuc.edu/

    Book  MATH  Google Scholar 

  18. Lozano-Pérez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. International Journal of Robotics Research 3(1), 3–24 (1984)

    Article  Google Scholar 

  19. Lynch, K.M., Mason, M.T.: Stable pushing: Mechanics, controllability, and planning. International Journal of Robotics Research 15(6), 533–556 (1996)

    Article  Google Scholar 

  20. Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press, Cambridge (2001)

    Google Scholar 

  21. Napp, N., Burden, S., Klavins, E.: The statistical dynamics of programmed self-assembly. In: IEEE International Conference on Robotics and Automation, pp. 1469–1476 (2006)

    Google Scholar 

  22. Reznik, D., Moshkoich, E., Canny, J.: Building a universal planar manipulator. In: Bohringer, K.F., Choset, H. (eds.) Distributed Manipulation, pp. 147–171. Kluwer, Norwell (2000)

    Chapter  Google Scholar 

  23. Tabachnikov, S.: Geometry and Billiards. American Mathematical Society, Providence, Rhode Island (2005)

    Google Scholar 

  24. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., Sano, M.: Experimental demonstration of information-to-energy conversion and validation of the generalized jarzynski equality. Nat. Phys. 6(12), 988–992 (2010)

    Article  Google Scholar 

  25. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  26. Wiegley, J., Goldberg, K., Peshkin, M., Brokowski, M.: A complete algorithm for designing passive fences to orient parts. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 1133–1139 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Bobadilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this paper

Cite this paper

Bobadilla, L., Gossman, K., LaValle, S.M. (2012). Manipulating Ergodic Bodies through Gentle Guidance. In: Kozłowski, K. (eds) Robot Motion and Control 2011. Lecture Notes in Control and Information Sciences, vol 422. Springer, London. https://doi.org/10.1007/978-1-4471-2343-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2343-9_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2342-2

  • Online ISBN: 978-1-4471-2343-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics