Skip to main content

Laboratory Demonstration Hardware for AVC

  • Chapter
  • First Online:
Model Predictive Vibration Control

Abstract

A laboratory demonstration hardware for the verification of model predictive control (MPC) algorithms in active vibration control (AVC) is introduced in detail. The laboratory device featured in the experiments comparing model predictive vibration control algorithms is a simple clamped cantilever beam with piezoelectric actuation. Despite of its elementary physical construction such a lightly damped vibrating device models the dynamics of a class of real-life applications, such as helicopter rotor beams, wing surfaces, antenna masts, manipulators and others. After a brief summary of this laboratory device, its experimental identification procedure is discussed. Some of the characteristic properties of the device are introduced as well, such as actuator linearity and noise tolerance. As finite element modeling (FEM) of vibrating structures is a valuable tool for the engineering practitioner, some of the results of the preliminary FEM analyses performed on the device are also presented. The chapter is closed with a section on hardware component details, which can be an aid to those who are unfamiliar with the components of such AVC demonstrators and are planning to build one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Courtesy of The Boeing Company.

  2. 2.

    See Fig. 1.4. on p. 9 for another photograph depicting the same smart helicopter rotor structure with AVC.

  3. 3.

    See the description of the host PC in Sect. 5.5.4.1.

  4. 4.

    That is 262 144 data points.

  5. 5.

    See the initial deflection, frequency domain and other experiments on the controlled system, as described in Sects. 12.2, 12.3.2, 12.4.

  6. 6.

    Presuming initial disturbance is removed and the system is able to settle on its own or under control.

  7. 7.

    see Sect. 12.1 for LQ, Sect. 12.2 and others for NRMPC and MPMPC.

  8. 8.

    Not actually plotted. The three different experiments produced random noise with the same specifications.

  9. 9.

    Actual quantization may differ significantly, possibly encoding potential polarity and others. For example a 10 V span can be divided into 1.5 mV portions.

  10. 10.

    Accelerometers and amplifiers registering both excitation and response.

  11. 11.

    Laser reference output is directly proportional to the measured value, in this case, there is a 1.5 mm/V gain.

  12. 12.

    Modes (3) and (5) are twisting modes and cannot be measured nor controlled with the sensor/actuator configuration assumed throughout this book.

  13. 13.

    An MPC control would provide significantly better performance than LQ given a MIMO vibration control system, where the real performance of the linear quadratic controller would be degraded due to the saturation limits not included in the original optimization task.

  14. 14.

    See (5.5.1) for more details on amplifier safety measures.

  15. 15.

    Considering the first three transversal vibration modes instead of five at design stage would be more suitable for this application. However, the issues regarding the size of the region of attraction and unexpected levels of NRMPC suboptimality were at this time unknown. See Sects.  11.1 and 11.4 for more details.

  16. 16.

    Actuator marked as PZT1, see Sect. 5.1 for details.

  17. 17.

    As of its current version: Release 13.0.

  18. 18.

    This safety limit is given in RMS, not peak values.

  19. 19.

    Courtesy of Thomas Huber.

  20. 20.

    See Sect. 5.3.2 for a measured mechanical noise and disturbance sample.

  21. 21.

    This computer has been used to compute the task execution times of various predictive controller featured in Sect. 12.5.

  22. 22.

    Formerly known as PCI-MIO-16XE-10.

References

  1. Agrawal BN, Bang H (1996) Adaptive structures for large precision antennas. Acta Astronautica 38(3):175–183. doi:10.1016/0094-5765(96)00062-8, http://www.sciencedirect.com/science/article/B6V1N-3VTW8Y7-3/2/a53f7c4acb3ee1541568e0db4062d985

    Google Scholar 

  2. Alam M, Tokhi M (2008) Designing feedforward command shapers with multi-objective genetic optimisation for vibration control of a single-link flexible manipulator. Eng Appl Artif Intell 21(2):229–246. doi:10.1016/j.engappai.2007.04.008, http://www.sciencedirect.com/science/article/B6V2M-4P0N8W7-1/2/0151e11caeeaab40012fcffe7059861b

  3. Allen M, Bernelli-Zazzera F, Scattolini R (2000) Sliding mode control of a large flexible space structure. Control Eng Pract 8(8):861–871. doi:10.1016/S0967-0661(00)00004-6, http://www.sciencedirect.com/science/article/B6V2H-4118CFK-2/2/7c38da4cfa63c75479f00bdc58a9fa9e

    Google Scholar 

  4. Amer Y, Bauomy H (2009) Vibration reduction in a 2DOF twin-tail system to parametric excitations. Commun Nonlinear Sci Numer Simul 14(2):560–573. doi:10.1016/j.cnsns.2007.10.005, http://www.sciencedirect.com/science/article/B6X3D-4PYP723-2/2/b9d5375168fadb0b4e67857e92948bfc

    Google Scholar 

  5. Bae JS, Kwak MK, Inman DJ (2005) Vibration suppression of a cantilever beam using eddy current damper. J Sound Vib 284(3–5):805–824. doi:10.1016/j.jsv.2004.07.031, http://www.sciencedirect.com/science/article/B6WM3-4F1J8KP-D/2/f6ceedf67a74bb2aadd57e99f8bea787

    Google Scholar 

  6. Balas M (1978) Feedback control of flexible systems. IEEE Trans Autom Control 23(4):673–679. doi:10.1109/TAC.1978.1101798

    Article  MATH  Google Scholar 

  7. Barrault G, Halim D, Hansen C (2007) High frequency spatial vibration control using method. Mech Syst Sig Process 21(4):1541–1560. doi: 10.1016/j.ymssp.2006.08.013, http://www.sciencedirect.com/science/article/B6WN1-4M33W0V-2/2/d0c429b3c7910c838e4e1c39d7d042e6

  8. Barrault G, Halim D, Hansen C, Lenzi A (2008) High frequency spatial vibration control for complex structures. Appl Acoust 69(11):933–944. doi:10.1016/j.apacoust.2007.08.004, http://www.sciencedirect.com/science/article/B6V1S-4R11Y2G-2/2/796db2eb20c42f55ab1a0ac73f869b45

    Google Scholar 

  9. Bittanti S, Cuzzola FA (2002) Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach. Control Eng Pract 10(10):1043–1057. doi:10.1016/S0967-0661(02)00052-7, http://www.sciencedirect.com/science/article/B6V2H-45KSPJJ-3/2/9647861ce849d131c7d4b90cdb964751

  10. Boeing Company (2004) Boeing-led team successfully tests SMART materials helicopter rotor. Online, http://www.boeing.com/news/releases/2004/photorelease/q2/

  11. Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039. doi:10.1016/j.conengprac.2003.09.008, http://www.sciencedirect.com/science/article/B6V2H-49Y3VWS-1/2/dd7bcefd1618f3820896ddbd6dce7430, in Special Section on Emerging Technologies for Active Noise and Vibration Control Systems

  12. Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mechanism. J Intell Rob Syst 58:125–147. doi:10.1007/s10846-009-9347-5

    Google Scholar 

  13. Brüel & Kjær Inc (2008) Mini-shaker—type 4810. Product data sheet. Brüel & Kjær, Sound & Vibration Measurement A/S, Nærum. http://wwww.bksv.com/doc/bp0232.pdf

  14. Brüel & Kjær Inc (2008) Operational amplifier—type 2718. Product data sheet. Brüel & Kjær, Sound & Vibration Measurement A/S, Nærum. http://wwww.bksv.com/doc/bp0232.pdf

  15. Cavallo A, De Maria G, Leccia E, Setola R (1997) A robust controller for active vibration control of flexible systems. In: Proceedings of the 36th IEEE conference on decision and control, vol 2. pp 1355–1360. doi:10.1109/CDC.1997.657648

  16. Chiang RY, Safonov MG (1991) Design of \({\fancyscript{H}}_\infty\) controller for a lightly damped system using a bilinear pole shifting transform. In: American control conference, pp 1927–1928

    Google Scholar 

  17. Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi:10.1016/j.ijmecsci.2007.08.001, http://www.sciencedirect.com/science/article/B6V49-4PD4XHC-1/2/c491dc4a4a881e38b0e20ceef7206dec

    Google Scholar 

  18. Chu CL, Wu BS, Lin YH (2006) Active vibration control of a flexible beam mounted on an elastic base. Finite Elem Anal Des 43(1):59–67. doi:10.1016/j.finel.2006.07.001, http://www.sciencedirect.com/science/article/pii/S0168874X06001144

  19. Cigada A, Mancosu F, Manzoni S, Zappa E (2010) Laser-triangulation device for in-line measurement of road texture at medium and high speed. Mech Syst Sig Process 24(7):2225–2234. doi:10.1016/j.ymssp.2010.05.002, http://www.sciencedirect.com/science/article/B6WN1-502V6TK-1/2/721efad2686da854aa76ed846c28861d, special Issue: ISMA 2010

  20. Cole MO, Wongratanaphisan T, Pongvuthithum R, Fakkaew W (2008) Controller design for flexible structure vibration suppression with robustness to contacts. Automatica 44(11):2876–2883. doi:10.1016/j.automatica.2008.03.022, http://www.sciencedirect.com/science/article/B6V21-4TNTN71-1/2/c5e859942698eab6c6b7f95e5dab2296

    Google Scholar 

  21. Daley S, Johnson FA, Pearson JB, Dixon R (2004) Active vibration control for marine applications. Control Eng Pract 12(4):465–474. doi:10.1016/S0967-0661(03)00135-7, http://www.sciencedirect.com/science/article/B6V2H-495051H-2/2/9b7cbd1e4f539a3b0c92c698ce1bad19 uKACC Conference Control 2002

    Google Scholar 

  22. Dong X, Meng G, Peng J (2006) Vibration control of piezoelectric smart structures based on system identification technique: numerical simulation and study. J Sound Vib 297:680–693

    Article  MathSciNet  Google Scholar 

  23. Eissa M, Bauomy H, Amer Y (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:45–462. 10.1007/s10409-007-0077-2

    Google Scholar 

  24. El-Badawy AA, Nayfeh AH (2001) Control of a directly excited structural dynamic model of an F-15 tail section. J Franklin Inst 338(2–3):133–147. doi:10.1016/S0016-0032(00)00075-2, http://www.sciencedirect.com/science/article/B6V04-42HNMDV-3/2/e3bf6f797834c8e8638324be88fb78f7

  25. Falconi C, Mantini G, D’Amico A, Wang ZL (2009) Studying piezoelectric nanowires and nanowalls for energy harvesting. Sens Actuators B 139(2):511–519. doi:10.1016/j.snb.2009.02.071, http://www.sciencedirect.com/science/article/B6THH-4VWB16R-F/2/cc7ca2b1281134e75cf141e8ef942105

  26. Friedman J, Khargonekar P (1995) Application of identification in \({\fancyscript{H}}_\infty\) to lightly damped systems: two case studies. IEEE Trans Control Syst Technol 3(3):279–289. doi:10.1109/87.406975

    Google Scholar 

  27. Fung RF, Liu YT, Wang CC (2005) Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib 288(4–5):957–980. doi:10.1016/j.jsv.2005.01.046, http://www.sciencedirect.com/science/article/B6WM3-4G4N5VD-1/2/fc3710f0625ef69f19d16c8778a63e58

  28. Gani A, Salami M, Khan R (2003) Active vibration control of a beam with piezoelectric patches: real-time implementation with xPC target. In: Proceedings of 2003 IEEE conference on control applications. CCA 2003, vol 1. pp 538–544. doi:10.1109/CCA.2003.1223494

  29. Gatti G, Brennan MJ, Gardonio P (2007) Active damping of a beam using a physically collocated accelerometer and piezoelectric patch actuator. J Sound Vib 303(3–5):798–813. doi:10.1016/j.jsv.2007.02.006, http://www.sciencedirect.com/science/article/B6WM3-4NH6N96-1/2/13ee638f653d035bca14ce9109e1cd96

  30. Gaudenzi P, Carbonaro R, Barboni R (1997) Vibration control of an active laminated beam. Compos Struct 38(1–4):413–420. doi:10.1016/S0263-8223(97)00076-7, http://www.sciencedirect.com/science/article/B6TWP-3SP98BG-1F/2/4153da95a6c08e2ac7317fcc212716e2 Ninth International Conference on Composite Structures

  31. Gaudenzi P, Carbonaro R, Benzi E (2000) Control of beam vibrations by means of piezoelectric devices: theory and experiments. Compos Struct 50:373–379

    Article  Google Scholar 

  32. Gaudiller L, Hagopian JD (1996) Active control of flexible structures using a minimum number of components. J Sound Vib 193(3):713–741. doi:10.1006/jsvi.1996.0310, http://www.sciencedirect.com/science/article/B6WM3-45PVM9F-35/2/146b67a462e38c197fe3acde5d1df54b

  33. Gospodaric B, Voncina D, Bucar B (2007) Active electromagnetic damping of laterally vibrating ferromagnetic cantilever beam. Mechatronics 17(6):291–298. doi:10.1016/j.mechatronics.2007.04.002, http://www.sciencedirect.com/science/article/B6V43-4NVSWV6-1/2/5c4672945cfa9b81238f0b1cb8a8eb13

    Google Scholar 

  34. Halim D, Moheimani S (2003) An optimization approach to optimal placement of collocated piezoelectric actuators and sensors on thin plate. Mechatronics 13:27–47

    Article  Google Scholar 

  35. Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(1):311–323

    Article  Google Scholar 

  36. Hatch MR (2000) Vibration simulation using MATLAB and ANSYS, 1st edn. Chapman and Hall / CRC, Boca Raton

    Book  MATH  Google Scholar 

  37. Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. Wiley / IEEE Press, Hoboken

    Book  Google Scholar 

  38. Herrick DC (1980) Study of velocity output vibration suppression controllers with a multiloop root locus. In: 19th IEEE conference on decision and control including the symposium on adaptive processes, vol 19. pp 1088–1090. doi:10.1109/CDC.1980.271970

  39. Hong SR, Choi SB, Han MS (2002) Vibration control of a frame structure using electro-rheological fluid mounts. Int J Mech Sci 44(10):2027–2045. doi:10.1016/S0020-7403(02)00172-8 http://www.sciencedirect.com/science/article/B6V49-47BX3RX-4/2/53a10ce8cbf8dfa679c34e04beb688e4

  40. Hu Q (2009) A composite control scheme for attitude maneuvering and elastic mode stabilization of flexible spacecraft with measurable output feedback. Aerosp Sci Technol 13(2–3):81–91. doi:10.1016/j.ast.2007.06.007, http://www.sciencedirect.com/science/article/B6VK2-4P96269-2/2/5fbc47249fdd3f1963c5ba856f071c55

  41. Hu QL, Wang Z, Gao H (2008) Sliding mode and shaped input vibration control of flexible systems. IEEE Trans Aersp Electron Syst 44(2):503–519. doi:10.1109/TAES.2008.4560203

    Article  Google Scholar 

  42. Huber T (2011) Image showing the scan points on the two bricks. Website, http://physics.gac.edu/huber/acoustics/speaker_vibrometer_fields/10khz_tweeter_finergrid3_cropped.png

  43. Huber T (2011) Photograph showing the speaker placed in front two bricks and the vibrometer scan head. Website, http://physics.gac.edu/huber/acoustics/speaker_vibrometer_fields/pic_0075.jpg

  44. Huber TM (2011) Measurement of mode shapes of musical instruments using a scanning laser Doppler vibrometer. J Acoust Soc Am 129(4):2615–2615. doi:10.1121/1.3588688, http://link.aip.org/link/?JAS/129/2615/5

    Google Scholar 

  45. Huber TM, Mellema DC, Abell B (2009) Selective excitation of microcantilever array using ultrasound radiation force. J Acoust Soc Am 125(4):2635–2635. http://link.aip.org/link/?JAS/125/2635/5

    Google Scholar 

  46. Hubinský P (2010) Riadenie mechatronických systémov s nízkym tlmením, 1st edn. In: Slovenská technická univerzita v Bratislave, Nakladatel’stvo STU, Control of mechatronic systems with low damping, Slovak language, Bratislava

    Google Scholar 

  47. Hulkó G, Belavý C, Belanský J, Szuda J, Végh P (1998) Modeling, control and design of distributed parameter systems: with demonstrations in Matlab, 1st edn. Publishing house of Slovak University of Technology, Bratislava

    Google Scholar 

  48. Hulkó G, Belavý C, Buček P, Ondrejkovič K, Zajíček P (2009) Engineering methods and software support for control of distributed parameter systems. In: ASCC 2009: 7th Asian control conference, pp 1432–1438

    Google Scholar 

  49. Hulkó G, Belavý C, Mészáros A, Buček P, Ondrejkovič K, Zajíček P (2009) Engineering methods and software support for modelling and design of discrete-time control of distributed parameter systems. Euro J Control 15(3–4):407–417

    Article  Google Scholar 

  50. Inman DJ (2007) Engineering vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle River

    Google Scholar 

  51. John S, Hariri M (2008) Effect of shape memory alloy actuation on the dynamic response of polymeric composite plates. Composites Part A 39(5):769–776. doi: 10.1016/j.compositesa.2008.02.005, http://www.sciencedirect.com/science/article/B6TWN-4RV7YMP-1/2/a8402bbfb476e507253cf32aea87cfb8

  52. Kang B, Mills JK (2005) Vibration control of a planar parallel manipulator using piezoelectric actuators. J Intell Rob Syst 42:51–70. doi:10.1007/s10846-004-3028-1

    Google Scholar 

  53. Kapucu S, Yıldırım N, Yavuz H, Bayseç S (2008) Suppression of residual vibration of a translating-swinging load by a flexible manipulator. Mechatronics 18(3):121–128. doi:10.1016/j.mechatronics.2007.10.007, http://www.sciencedirect.com/science/article/B6V43-4R8M99T-1/2/75f50dfb587306d4ed19a2be2d79471e

    Google Scholar 

  54. Karl W, Verghese G, Lang J (1994) Control of vibrational systems. IEEE Trans Autom Control 39(1):222–226. doi:10.1109/9.273372

    Article  MathSciNet  MATH  Google Scholar 

  55. Kermani MR, Moallem M, Patel RV (2004) Parameter selection and control design for vibration suppression using piezoelectric transducers. Control Eng Pract 12:1005–1015

    Article  Google Scholar 

  56. Keyence Inc (2003) Displacement sensors technical guide. Keyence Inc., Osaka

    Google Scholar 

  57. Keyence Inc (2004) LK Navigator user’s manual. Keyence Inc., for LK-G Series Setting and Support Software LK-H1W, Osaka

    Google Scholar 

  58. Keyence Inc (2006) LK-G series user’s manual. Keyence Inc., Osaka

    Google Scholar 

  59. Kim SM, Wang S, Brennan MJ (2011) Dynamic analysis and optimal design of a passive and an active piezo-electrical dynamic vibration absorber. J Sound Vib 330(4):603–614. doi:10.1016/j.jsv.2010.09.004, http://www.sciencedirect.com/science/article/B6WM3-5172KF3-2/2/719330ee33502c8438c9b629587c52ca

  60. Kursu O, Kruusing A, Pudas M, Rahkonen T (2009) Piezoelectric bimorph charge mode force sensor. Sens Actuat A 153(1):42–49. doi:10.1016/j.sna.2009.04.026, http://www.sciencedirect.com/science/article/B6THG-4W6Y34K-4/2/ae7628bbda5ac689d58eaec08bddb9e5

    Google Scholar 

  61. Kwak MK, Heo S (2007) Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J Sound Vib 304(1–2):230–245. doi:10.1016/j.jsv.2007.02.021, http://www.sciencedirect.com/science/article/B6WM3-4NH6N96-2/2/ca7b43602b9d052e388f4b2a28f1ebae

    Google Scholar 

  62. Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi:10.1016/S0263-8223(02)00042-9, http://www.sciencedirect.com/science/article/B6TWP-45XTP9W-N/2/07b9a065ac866d8869a4240deb918851

  63. Lee HK, Chen ST, Lee AC (1996) Optimal control of vibration suppression in flexible systems via dislocated sensor/actuator positioning. J Franklin Inst 333(5):789–802. doi:10.1016/0016-0032(96)00038-5, http://www.sciencedirect.com/science/article/B6V04-3VVCHR0-B/2/05cf1444f44d099257f07563677c080

  64. Lewis B, Tran H (2007) Real-time implementation of a frequency shaping controller on a cantilever beam. Appl Numer Math 57(5–7): 778–790. doi: 10.1016/j.apnum.2006.07.017 http://www.sciencedirect.com/science/article/B6TYD-4KNM9VK-1/2/ec6029368a3e3663b78c57001fc89897, , special Issue for the International Conference on Scientific Computing

  65. Li M, Lim TC, Lee JH (2008) Simulation study on active noise control for a 4-T MRI scanner. Magn Reson Imaging 26(3):393–400. doi:10.1016/j.mri.2007.08.003, http://www.sciencedirect.com/science/article/B6T9D-4R8KT3W-2/2/2797c565f329cf6cd1e567eefb69607e

  66. Li YY, Cheng L, Li P (2003) Modeling and vibration control of a plate coupled with piezoelectric material. Compos Struct 62(2):155–162. doi:10.1016/S0263-8223(03)00110-7, http://www.sciencedirect.com/science/article/B6TWP-48R1WVK-1/2/f0788ece03ae40a5874f11852e927842

    Google Scholar 

  67. Lin J, Liu WZ (2006) Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J Sound Vib 296(3):567–582. doi:10.1016/j.jsv.2006.01.066 http://www.sciencedirect.com/science/article/B6WM3-4K0FG0H-2/2/e4fad7e52e98cf46123aa869cf780b65

  68. Lin J, Nien MH (2005) Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors. Compos Struct 70:170–176

    Article  Google Scholar 

  69. Lin LC, Lee TE (1997) Integrated PID-type learning and fuzzy control for flexible-joint manipulators. J Intell Rob Syst 18:47–66. http://10.1023/A:1007942528058,10.1023/A:1007942528058

    Google Scholar 

  70. Ljung L (1999) System identification: theory for the user, 2nd edn. PTR Prentice Hall, Upper Saddle River

    Google Scholar 

  71. Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055 10.1007/s00170-004-2433-8

    Google Scholar 

  72. Luo T, Hu Y (2002) Vibration suppression techniques for optical inter-satellite communications. In: IEEE 2002 international conference on communications, circuits and systems and west sino expositions, vol 1. pp 585–589. doi:10.1109/ICCCAS.2002.1180687

  73. Mahmoodi S, Daqaq MF, Jalili N (2009) On the nonlinear-flexural response of piezoelectrically driven microcantilever sensors. Sens Actuators A 153(2):171–179. doi:10.1016/j.sna.2009.05.003, http://www.sciencedirect.com/science/article/B6THG-4W8TW31-1/2/4fc1a15727232bf3e6741b9f2618c61c

  74. Mahmoodi SN, Craft MJ, Southward SC, Ahmadian M (2011) Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking. J Sound Vib 330(7):1300–1311. doi:10.1016/j.jsv.2010.10.013, http://www.sciencedirect.com/science/article/B6WM3-51D894K-1/2/25e8ef1bcadb5fd2aa078de4d678c7f4

    Google Scholar 

  75. Malgaca L (2010) Integration of active vibration control methods with finite element models of smart laminated composite structures. Compos Struct 92(7):1651–1663. doi:10.1016/j.compstruct.2009.11.032, http://www.sciencedirect.com/science/article/B6TWP-4XY4K3R-1/2/39a31e42ad10d6e7aafe32a91352372a

  76. Mehrabian AR, Yousefi-Koma A (2011) A novel technique for optimal placement of piezoelectric actuators on smart structures. J Franklin Inst 348(1):12–23. doi:10.1016/j.jfranklin.2009.02.006, http://www.sciencedirect.com/science/article/B6V04-4VTCM9T-1/2/1d68ecf523d642a7246481a506f3edab, mechatronics and its Applications

    Google Scholar 

  77. MIDÉ Technology Corporation (2007) QuickPack actuator catalog. MIDÉ Technology Corporation, Medford

    Google Scholar 

  78. MIDÉ Technology Corporation (2007) QuickPack power amplifier. MIDÉ Technology Corporation, Medford (Operator’s Manual)

    Google Scholar 

  79. MIDÉ Technology Corporation (2008) Attaching the quickpack/powerAct transducer to a structure with epoxy. MIDÉ Technology Corporation, Medford (quick Pack Technical Notes)

    Google Scholar 

  80. Montazeri A, Poshtan J, Choobdar A (2009) Performance and robust stability trade-off in minimax LQG control of vibrations in flexible structures. Eng Struct 31(10):2407–2413. doi:10.1016/j.engstruct.2009.05.011, http://www.sciencedirect.com/science/article/B6V2Y-4WJ2CGY-1/2/66039e162a0fe4f3e4aa37dbae422b04

  81. Moon SM, Cole DG, Clark RL (2006) Real-time implementation of adaptive feedback and feedforward generalized predictive control algorithm. J Sound Vib 294(1–2):82–96. doi:10.1016/j.jsv.2005.10.017, http://www.sciencedirect.com/science/article/B6WM3-4HYMY76-1/2/50d98047187533ebe9d3ea8310446e77

  82. National Instruments Corporation (2005) NI 6030E/6031E/6032E/6033E Family Specifications. National Instruments Corporation, Austin. http://www.ni.com/pdf/manuals/370720c.pdf

  83. National Instruments Corporation (2007) DAQ E series user manual. National Instruments Corporation, Austin. http://www.ni.com/pdf/manuals/370720c.pdf

  84. Neat G, Melody J, Lurie B (1998) Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans Control Syst Technol 6(6):689–700. doi:10.1109/87.726529

    Article  Google Scholar 

  85. Nguyen C, Pietrzko S (2006) FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R-L shunt circuit. Finite Elem Anal Des 42(14–15):1231–1239. doi:10.1016/j.finel.2006.06.003,http://www.sciencedirect.com/science/article/B6V36-4KGX810-1/2/ada2103f6ecf58789b588a65756803d5

  86. Nouira H, Folte te E, Brik BA, Hirsinger L, Ballandras S (2008) Experimental characterization and modeling of microsliding on a small cantilever quartz beam. J Sound Vib 317(1–2):30–49. doi:10.1016/j.jsv.2008.03.017, http://www.sciencedirect.com/science/article/B6WM3-4SGTM4T-1/2/6adaaffb834cdd20916ebdbc5d0b3592

    Google Scholar 

  87. O’Connor WJ (2006) Wave-echo control of lumped flexible systems. J Sound Vib 298(4–5):1001–1018. doi:10.1016/j.jsv.2006.06.010, http://www.sciencedirect.com/science/article/B6WM3-4KM46VY-3/2/b2b255aa52ecbc2dfe781e84207a479f

    Google Scholar 

  88. Petersen IR, Pota HR (2003) Minimax LQG optimal control of a flexible beam. Control Eng Pract 11:1273–1287

    Article  Google Scholar 

  89. Podolan M (2007) Hliník a jeho zliatiny, ich porovnanie a dostupnost’ na trhu. Tech. rep., IMC Slovakia s.r.o. In: Aluminum and its alloys: comparison and market accessibility, Slovak language. Považská Bystrica

    Google Scholar 

  90. Polóni T, Rohal’-Ilkiv B, Johansen TA (2010) Damped one-mode vibration model state and parameter estimation via pre-filtered moving horizon observer. In: 5th IFAC symposium on mechatronic systems. Mechatronics 2010, IFAC, Boston, pp 24–31

    Google Scholar 

  91. Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  92. Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  93. Qiu Z, Zhang X, Wu H, Zhang H (2007) Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate. J Sound Vib 301:521–543

    Article  MathSciNet  Google Scholar 

  94. Qiu ZC, Wu HX, Ye CD (2009) Acceleration sensors based modal identification and active vibration control of flexible smart cantilever plate. Aerosp Sci Technol 13(6):277–290. doi:10.1016/j.ast.2009.05.003, http://www.sciencedirect.com/science/article/B6VK2-4WB3NH7-2/2/e7bef32fa0e1ef301516f9b393ea8a97

  95. Scheibner D, Mehner J, Brämer B, Gessner T, Dötzel W (2003) Wide range tuneable resonators for vibration measurements. Microelectron Eng 67–68:542–549

    Article  Google Scholar 

  96. Shan J, Liu HT, Sun D (2005) Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4):487–503. doi:10.1016/j.mechatronics.2004.10.003, http://www.sciencedirect.com/science/article/B6V43-4DR87K7-4/2/2dd311fdd61308e1415cd45c1edc3076

    Google Scholar 

  97. Shen H, Qiu J, Ji H, Zhu K, Balsi M, Giorgio I, Dell’Isola F (2010) A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources. Sens Actuators A 161(1–2):245–255. doi:10.1016/j.sna.2010.04.012, http://www.sciencedirect.com/science/article/B6THG-5017HGW-1/2/a638dcd70899a318cd3871a5112021bb

  98. Shieh J, Huber JE, Fleck NA, Ashby MF (2001) The selection of sensors. Prog Mater Sci 46(3–4):461–504. doi:10.1016/S0079-6425(00)00011-6,, http://www.sciencedirect.com/science/article/B6TX1-42JYVPK-G/2/b23a52757764ef929c1164920807d3d6

    Google Scholar 

  99. Siemens Industry Incorporated (2010) Capacitive proximity sensors: theory of operation. Munich, http://www.eandm.com/eandm/training/siemenscourses/snrs_3.pdf

  100. Skullestad A, Hallingstad O (1998) Vibration parameters identification in a spacecraft subjected to active vibration damping. Mechatronics 8(6):691–705. doi:0.1016/S0957-4158(97)00051-2, http://www.sciencedirect.com/science/article/B6V43-3W18XD5-4/2/d6e2d2a478a77ff09e9f6f7dfe7fd503

  101. Sloss J, Bruch J, Sadek I, Adali S (2003) Piezo patch sensor/actuator control of the vibrations of a cantilever under axial load. Compos Struct 62:423–428

    Article  Google Scholar 

  102. Sodano HA, Inman DJ (2007) Non-contact vibration control system employing an active eddy current damper. J Sound Vib 305(4–5):596–613. doi:10.1016/j.jsv.2007.04.050, http://www.sciencedirect.com/science/article/B6WM3-4P2J38T-3/2/a75ecce7ed7841e00499a50d077bd23c

    Google Scholar 

  103. Šolek P (2009) Numerical analyses of piezoelectric elements, 1st edn. Slovenská technická univerzita v Bratislave, Nakladatel’stvo STU, Bratislava

    Google Scholar 

  104. Šolek P, Starek L, Hulkó G, Šedivý C, Cibiri Š (2005) Theoretical and experimental study of efficient suppression vibrations in a clamped square plate. Inženýrská Mechanika Engineering Mechanics 12(A1):277–284

    Google Scholar 

  105. Spangler R (2007) Piezo sensor technical note, 2nd edn. MIDÉ Technology Corporation, Medford

    Google Scholar 

  106. Sun D, Mills JK, Shan J, Tso SK (2004) A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4):381–401. doi:10.1016/S0957-4158(03)00066-7, http://www.sciencedirect.com/science/article/B6V43-49DN5K4-1/2/fa21df547f182ad568cefb2ddf3a6352

    Google Scholar 

  107. Tabak F, Disseldorp E, Wortel G, Katan A, Hesselberth M, Oosterkamp T, Frenken J, van Spengen W (2010) MEMS-based fast scanning probe microscopes. Ultramicroscopy 110(6):599–604. doi:10.1016/j.ultramic.2010.02.018, http://www.sciencedirect.com/science/article/B6TW1-4YJCKXY-1/2/4f5b9ba5875b8066d7cb20174f05ad61, 11th International Scanning Probe Microscopy Conference

    Google Scholar 

  108. Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton-Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds). Proceedings of the 3rd international conference on noise and vibration: emerging methods. Oxford

    Google Scholar 

  109. Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (eds) Proceedings of the 28. IASTED international conference on modeling, identification and control, Innsbruck

    Google Scholar 

  110. Takács G, Rohal’-Ilkiv B (2010) Capacitive proximity sensor position feedback in active vibration control of lightly damped cantilevers. In: Shokin YI, Bychkov I, Potaturkin O (eds). Proceedings of the 3rd IASTED international multiconference ACIT-CDA. Novosibirsk, pp 692–700

    Google Scholar 

  111. Takács G, Rohal’-Ilkiv B (2010) Piezoelectric wafer based feedback in vibration control of lightly damped beams. In: Proceedings of the 9th international scientific—technical conference—Process control 2010, Kouty nad Desnou, p C43a

    Google Scholar 

  112. The Mathworks (2007) xPC Target 4. Software. The MathWorks Inc., Natick. http://www.mathworks.com/products/xpctarget/

  113. The MathWorks (2008) xPC target for use with real-time workshop, 6th edn. The MathWorks Inc., Natick. http://www.mathworks.com/products/xpctarget/

  114. The Mathworks (2009) How can I look at the data in a file created by the file scope block on the host machine in xPC Target 2.7.2 (R14SP2). The MathWorks Inc., Natick. Available: http://www.mathworks.de/support/solutions/data/1-1J7RAI.html?product=XP&solution=1-1J7RAI

  115. The Mathworks (2011) Matlab system identification toolbox v7.4.2 (R2011a). Software. The MathWorks Inc., Natick. Available: http://www.mathworks.com/help/toolbox/ident/

  116. Torra V, Isalgue A, Martorell F, Terriault P, Lovey F (2007) Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Eng Struct 29(8):1889–1902. doi:10.1016/j.engstruct.2006.08.028, http://www.sciencedirect.com/science/article/B6V2Y-4MFKD84-1/ 2/8742fa675c346a7b34f395d9422cbc22

    Google Scholar 

  117. Wang W, Yang Z (2009) A compact piezoelectric stack actuator and its simulation in vibration control. Tsinghua Sci Technol 14(Suppl 2):43–48. doi:10.1016/S1007-0214(10)70029-8, http://www.sciencedirect.com/science/article/B7RKT-4YJ4CW2-9/2/11681292e718c72b12ae9969c514f4bf

  118. Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12

    Article  Google Scholar 

  119. Wilson DG, Robinett RD, Parker GG, Starr GP (2002) Augmented sliding mode control for flexible link manipulators. J Intell Rob Syst 34:415–430. doi:10.1023/A:1019635709331

    Google Scholar 

  120. Xiaojin Z, Miao Z, Zhiyuan G, Zhiyan C (2010) Analysis of active vibration control for piezoelectric intelligent structures by ANSYS and MATLAB. In: 2010 international conference on computer application and system modeling (ICCASM), vol 4. pp V4-184 –V4-188. doi: 10.1109/ICCASM.2010.5619058

  121. Yim W (1996) Modified nonlinear predictive control of elastic manipulators. In: Proceedings of the 1996 IEEE international conference on robotics and automation, vol 3. pp 2097–2102. 10.1109/ROBOT.1996.506180

  122. Zhang P (2008) Sensors and actuators for industrial control. In: Industrial control technology, William Andrew Publishing, Norwich, pp 1–186. doi:10.1016/B978-081551571-5.50002-5 http://www.sciencedirect.com/science/article/B8M8S-4TRTX8X-4/2/7446382607dd6d46d9befe145fcee072

  123. Zheng K, Zhang Y, Yang Y, Yan S, Dou L, Chen J (2008) Active vibration control of adaptive truss structure using fuzzy neural network. In: Control and decision conference, CCDC 2008. Chinese, pp 4872–4875. doi: 10.1109/CCDC.2008.4598254

  124. Zmeu K, Shipitko E (2005) Predictive controller design with offline model learning for flexible beam control. In: Proceedings of the 2005 international conference on physics and control, pp 345–350. doi:10.1109/PHYCON.2005.1514005

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Takács, G., Rohal’-Ilkiv, B. (2012). Laboratory Demonstration Hardware for AVC. In: Model Predictive Vibration Control. Springer, London. https://doi.org/10.1007/978-1-4471-2333-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2333-0_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2332-3

  • Online ISBN: 978-1-4471-2333-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics