Experimental Model Predictive Vibration Control

  • Gergely Takács
  • Boris Rohal’-Ilkiv


This chapter presents the results of experiments comparing different computationally efficient model predictive control (MPC) methods applied to a laboratory device, demonstrating the active vibration control (AVC) of lightly damped mechanical structures. Because of the combination of long prediction horizons, short sampling times and large actuator-disturbance asymmetry, the implementation of the predictive control strategy on lightly damped vibrating structures is highly demanding. The vibration damping effect and online timing properties of model predictive control algorithms such as infinite horizon cost dual-mode quadratic programming based MPC (QPMPC), pre-computed explicit multi-parametric programming based MPC (MPMPC), minimum-time MPMPC and the very efficient but suboptimal Newton–Raphson based MPC (NRMPC); all with guaranteed stability and constraint feasibility are analyzed in different disturbance and loading scenarios. All MPC methods along with the baseline linear quadratic (LQ) controller decrease vibration settling to equilibrium by an order of magnitude time. The damping effect of all investigated MPC strategies is comparable with a slight decrease in performance for the suboptimal minimum-time MPMPC and NRMPC controllers. Due to the excessive online computational needs of QPMPC, it is a very unlikely candidate for lightly damped vibrating systems given currently available hardware. The online timing analysis presented here demonstrates that MPMPC provides significantly shorter online execution times, however its suboptimal minimum-time version does not bring a convincing improvement. NRMPC can provide online execution times on par with linear quadratic controllers; however, its suboptimality becomes excessive with increasing prediction model orders.


Combustion Convection Attenuation Sine Mast 


  1. 1.
    Agrawal BN, Bang H (1996) Adaptive structures for large precision antennas. Acta Astronaut 38(3):175–183. doi: 10.1016/0094-5765(96)00062-8, http://www.sciencedirect.com/science/article/B6V1N-3VTW8Y7-3/2/a53f7c4acb3ee1541568e0db4062d985 Google Scholar
  2. 2.
    Allaire PE, Lewis DW, Knight JD (1983) Active vibration control of a single mass rotor on flexible supports. J Franklin Inst 315(3):211–222. doi:  10.1016/0016-0032(83)90025-X, http://www.sciencedirect.com/science/article/B6V04-45D9SMR-M/2/62024de7918cc7b0b23d9703691ab67a
  3. 3.
    Amer Y, Bauomy H (2009) Vibration reduction in a 2DOF twin-tail system to parametric excitations. Commun Nonlinear Sci Numer Simul 14(2):560–573. doi: 10.1016/j.cnsns.2007.10.005, http://www.sciencedirect.com/science/article/B6X3D-4PYP723-2/2/b9d5375168fadb0b4e67857e92948bfc Google Scholar
  4. 4.
    Bemporad A, Bozinis NA, Dua V, Morari M, Pistikopoulos EN (2000) Model predictive control: a multi-parametric programming approach. In: Pierucci S (ed) European symposium on computer aided process engineering-10, Computer aided chemical engineering, vol 8. Elsevier, Amsterdam, pp 301–306. doi:  10.1016/S1570-7946(00)80052-8, http://www.sciencedirect.com/science/article/B8G5G-4NK5JX8-1V/2/76240158054cdb0fb1454f6e0eaa5dfe
  5. 5.
    Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20. doi: 10.1016/S0005-1098(01)00174-1, http://www.sciencedirect.com/science/article/B6V21-44B8B5J-2/2/2a3176155886f92d43afdf1dccd128a6 Google Scholar
  6. 6.
    Bittanti S, Cuzzola FA (2002) Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach. Control Eng Pract 10(10):1043–1057. doi: 10.1016/S0967-0661(02)00052-7, http://www.sciencedirect.com/science/article/B6V2H-45KSPJJ-3/2/9647861ce849d131c7d4b90cdb964751
  7. 7.
    Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039. doi: 10.1016/j.conengprac.2003.09.008, http://www.sciencedirect.com/science/article/B6V2H-49Y3VWS-1/2/dd7bcefd1618f3820896ddbd6dce7430, in Special Section on Emerging Technologies for Active Noise and Vibration Control Systems
  8. 8.
    Borelli F, Baotic M, Bemporad A, Morari M (2003) An efficient algorithm for computing the state feedback optimal control law for discrete time hybrid systems. In: Proceeding of the American control conference, Denver, ColoradoGoogle Scholar
  9. 9.
    Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mechanism. J Intell Rob Syst 58:125–147. doi: 10.1007/s10846-009-9347-5 Google Scholar
  10. 10.
    Cannon M, Kouvaritakis B (2005) Optimizing prediction dynamics for robust MPC. IEEE Trans Autom Control 50(11):1892–1897. doi: 10.1109/TAC.2005.858679 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Carotti A, Lio G (1991) Experimental active control: bench tests on controller units. Eng Struct 13(3):242–252. doi: 10.1016/0141-0296(91)90036-C, http://www.sciencedirect.com/science/article/B6V2Y-4829VWB-CG/2/4414a8cb4321f4e346ca04468e610264
  12. 12.
    Carra S, Amabili M, Ohayon R, Hutin P (2008) Active vibration control of a thin rectangular plate in air or in contact with water in presence of tonal primary disturbance. Aerosp Sci Technol 12(1):54–61. doi: 10.1016/j.ast.2007.10.001, http://www.sciencedirect.com/science/article/B6VK2-4PXDM8C-1/2/db87a30acd2bfaefa3f97e3896bc9232, Aircraft Noise Reduction
  13. 13.
    Chang CS, Liu TS (2007) LQG controller for active vibration absorber in optical disk drive. IEEE Trans Magn 43(2):799–801. doi: 10.1109/TMAG.2006.888417 Google Scholar
  14. 14.
    Chen H, Allgöver F (1998) A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10):1205–1217MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen L, Pan J, Cai G (2008) Active control of a flexible cantilever plate with multiple time delays. Acta Mech Solida Sinica 21(3):257–266. doi: 10.1007/s10338-008-0829-y, http://www.sciencedirect.com/science/article/B984H-4W93GVV-8/2/ece55a791fb3bb182fa01fde13bced38 Google Scholar
  16. 16.
    Choi S, Park Y, Fukuda T (1998) A proof-of-concept investigation on active vibration control of hybrid smart structures. Mechatronics 8(6):673–689. doi:  10.1016/S0957-4158(98)00029-4, http://www.sciencedirect.com/science/article/B6V43-3W18XD5-3/2/7d21a042ed91fd289d4f11eb0b5dc52c
  17. 17.
    Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi: 10.1016/j.ijmecsci.2007.08.001, http://www.sciencedirect.com/science/article/B6V49-4PD4XHC-1/2/c491dc4a4a881e38b0e20ceef7206dec Google Scholar
  18. 18.
    Eissa M, Bauomy H, Amer Y (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:451–462. doi: 10.1007/s10409-007-0077-2 Google Scholar
  19. 19.
    El-Badawy AA, Nayfeh AH (2001) Control of a directly excited structural dynamic model of an F-15 tail section. J Franklin Inst 338(2–3):133–147. doi:  10.1016/S0016-0032(00)00075-2, http://www.sciencedirect.com/science/article/B6V04-42HNMDV-3/2/e3bf6f797834c8e8638324be88fb78f7
  20. 20.
    Eski I, Yıldırım S (2009) Vibration control of vehicle active suspension system using a new robust neural network control system. Simul Modell Pract Theory 17(5):778–793. doi: 10.1016/j.simpat.2009.01.004, http://www.sciencedirect.com/science/article/B6X3C-4VHSDJ4-1/2/d2fe946695b369279d2e1229f15a61bd
  21. 21.
    Ferreau HJ (2006) An online active set strategy for fast solution of parametric quadratic programs with applications to predictive engine control. Master’s thesis, University of HeidelbergGoogle Scholar
  22. 22.
    Ferreau HJ (2011) qpOASES—Online Active Set Strategy. Leuven, http://www.qpoases.org
  23. 23.
    Ferreau HJ (2011) qpOASES user’s manual. Optimization in Engineering Center (OPTEC) and Department of Electrical Engineering, K. U. Leuven, LeuvenGoogle Scholar
  24. 24.
    Ferreau HJ, Ortner P, Langthaler P, del Re L, Diehl M (2007) Predictive control of a real-world Diesel engine using an extended online active set strategy. Annu Rev Control 31(2):293–301. doi: 10.1016/j.arcontrol.2007.09.001, http://www.sciencedirect.com/science/article/B6V0H-4R05C2B-2/2/23db757b09f804365ba12dc1844992d9
  25. 25.
    Ferreau HJ, Bock HG, Diehl M (2008) An online active set strategy to overcome the limitations of explicit MPC. Int J Robust Nonlinear Control 18(8):816–830MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fischer D, Isermann R (2004) Mechatronic semi-active and active vehicle suspensions. Control Eng Pract 12(11):1353–1367. doi: 10.1016/j.conengprac.2003.08.003, http://www.sciencedirect.com/science/article/B6V2H-49V1CR4-2/2/0dd89d1b7760e7303a32b5bdd2cbbf9b, Mechatronic Systems
  27. 27.
    Fung RF, Liu YT, Wang CC (2005) Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib 288(4-5):957–980. doi: 10.1016/j.jsv.2005.01.046, http://www.sciencedirect.com/science/article/B6WM3-4G4N5VD-1/2/fc3710f0625ef69f19d16c8778a63e58
  28. 28.
    Grewal A, Modi VJ (1996) Robust attitude and vibration control of the space station. Acta Astronaut 38(3):139–160. doi: 10.1016/0094-5765(96)00073-2, http://www.sciencedirect.com/science/article/B6V1N-3VTW8Y7-1/2/f021cc3321a4dd86a85907f0e1bc3e4c Google Scholar
  29. 29.
    Guclu R (2006) Sliding mode and PID control of a structural system against earthquake. Math Comput Modell 44(1–2):210–217. doi: 10.1016/j.mcm.2006.01.014, http://www.sciencedirect.com/science/article/B6V0V-4JP9FV5-1/2/0900f85ba6e764d746c054ac040aff77 (Advances in business modeling and decision technologies, pp 1–95)
  30. 30.
    Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(1):311–323CrossRefGoogle Scholar
  31. 31.
    Hassapis G (2003) Implementation of model predictive control using real-time multiprocessing computing. Microprocess Microsyst 27(7):327–340. doi:  10.1016/S0141-9331(03)00063-2, http://www.sciencedirect.com/science/article/B6V0X-48FK01C-1/2/e1b3f9ea4bddf2d564bd5bcfe4a6506a
  32. 32.
    He XQ, Ng TY, Sivashanker S, Liew KM (2001) Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct 38(9):1641–1655. doi: 10.1016/S0020-7683(00)00050-0, http://www.sciencedirect.com/science/article/B6VJS-41WB6JY-11/2/131df87366732db91b65cd1418c2d1d9
  33. 33.
    Ho CC, Ma CK (2007) Active vibration control of structural systems by a combination of the linear quadratic Gaussian and input estimation approaches. J Sound Vib 301(3-5):429–449. doi: 10.1016/j.jsv.2005.12.061, http://www.sciencedirect.com/science/article/B6WM3-4MV19X0-1/2/39db74e66a9494e834cdab9f0da4b886
  34. 34.
    Hong SR, Choi SB, Han MS (2002) Vibration control of a frame structure using electro-rheological fluid mounts. Int J Mech Sci 44(10):2027–2045. doi: 10.1016/S0020-7403(02)00172-8, http://www.sciencedirect.com/science/article/B6V49-47BX3RX-4/2/53a10ce8cbf8dfa679c34e04beb688e4
  35. 35.
    Hsu YC, Wu CC, Lee CC, Cao GZ, Shen IY (2004) Demonstration and characterization of PZT thin-film sensors and actuators for meso- and micro-structures. Sens Actuators A 116(3):369–377. doi: 10.1016/j.sna.2004.05.024, http://www.sciencedirect.com/science/article/B6THG-4CS4GDG-1/2/87f204ac4c1f3ffc13634c2fdd68a2f6
  36. 36.
    Hu Q (2009) A composite control scheme for attitude maneuvering and elastic mode stabilization of flexible spacecraft with measurable output feedback. Aerosp Sci Technol 13(2–3):81–91. doi: 10.1016/j.ast.2007.06.007, http://www.sciencedirect.com/science/article/B6VK2-4P96269-2/2/5fbc47249fdd3f1963c5ba856f071c55
  37. 37.
    Imsland L, Bar N, Foss BA (2005) More efficient predictive control. Automatica 41(8):1395–1403. doi: 10.1016/j.automatica.2005.03.010, http://www.sciencedirect.com/science/article/B6V21-4G7NT35-1/2/52a9590bfe1ccc2a9561165c3fbdf872 Google Scholar
  38. 38.
    Inman DJ (2007) Engineering vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle RiverGoogle Scholar
  39. 39.
    Ji H, Qiu J, Zhu K, Badel A (2010) Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy. J Sound Vib 329(14):2751–2767. doi: 10.1016/j.jsv.2010.01.012, http://www.sciencedirect.com/science/article/B6WM3-4YG1R6R-2/2/88406f934e48ccfe56a6188409cc989e
  40. 40.
    Jnifene A (2007) Active vibration control of flexible structures using delayed position feedback. Syst Control Lett 56(3):215–222. doi: 10.1016/j.sysconle.2006.10.005, http://www.sciencedirect.com/science/article/B6V4X-4MJC1V9-1/2/5fe33b4788d9ca97d9a9938bc7742194 Google Scholar
  41. 41.
    Jung WJ, Jeong WB, Hong SR, Choi SB (2004) Vibration control of a flexible beam structure using squeeze-mode ER mount. J Sound Vib 273(1–2):185–199, doi: 10.1016/S0022-460X(03)00478-4, http://www.sciencedirect.com/science/article/B6WM3-49DFFMM-1/2/1255ad59eca53b0c021632de61aef0b8 Google Scholar
  42. 42.
    Kang B, Mills JK (2005) Vibration control of a planar parallel manipulator using piezoelectric actuators. J Intell Rob Syst 42:51–70. doi: 10.1007/s10846-004-3028-1, http://dx.doi.org/10.1007/s10846-004-3028-1 Google Scholar
  43. 43.
    Kerrigan E, Mayne D (2002) Optimal control of constrained, piecewise affine systems with bounded disturbances. In: Proceedings of the 41st IEEE conference on decision and control, 2002, vol 2, pp 1552–1557. doi: 10.1109/CDC.2002.1184740
  44. 44.
    Kim I, Kim YS (2009) Active vibration control of trim panel using a hybrid controller to regulate sound transmission. Int J Precis Eng Manuf 10:41–47. doi: 10.1007/s12541-009-0007-2, http://dx.doi.org/10.1007/s12541-009-0007-2
  45. 45.
    Kouvaritakis B, Rossiter J, Schuurmans J (2000) Efficient robust predictive control. IEEE Trans Autom Control 45(8):1545–1549. doi: 10.1109/9.871769 MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Kouvaritakis B, Cannon M, Rossiter J (2002) Who needs QP for linear MPC anyway? Automatica 38:879–884. doi: 10.1016/S0005-1098(01)00263-1, http://www.sciencedirect.com/science/article/pii/S0005109801002631 MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Kouvaritakis B, Li S, Cannon M (2010) A line search improvement of efficient MPC. Automatica 46(11):1920–1924. doi: 10.1016/j.automatica.2010.07.003, http://www.sciencedirect.com/science/article/B6V21-50NH0BX-3/2/0b4491d922a7d04d1b0315edae0e8944 Google Scholar
  48. 48.
    Krishnaswamy K, Rajamani R, Woo J, Cho Y (2005) Structural vibration control for broadband noise attenuation in enclosures. J Mech Sci Technol 19:1414–1423. doi: 10.1007/BF03023900 Google Scholar
  49. 49.
    Kvasnica M (2009) Real-time model predictive control via multi-parametric programming: theory and tools, 1st edn. VDM Verlag, SaarbrückenGoogle Scholar
  50. 50.
    Kvasnica M, Grieder P, Baotic M, Christophersen FJ (2006) Multi-Parametric Toolbox (MPT). Extended documentationGoogle Scholar
  51. 51.
    Kwak MK, Heo S (2007) Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J Sound Vib 304(1–2):230–245. doi: 10.1016/j.jsv.2007.02.021, http://www.sciencedirect.com/science/article/B6WM3-4NH6N96-2/2/ca7b43602b9d052e388f4b2a28f1ebae Google Scholar
  52. 52.
    Landau ID, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension–an internal model principle approach. Automatica 41(4):563–574. doi: 10.1016/j.automatica.2004.08.022, http://www.sciencedirect.com/science/article/B6V21-4FB3X55-3/2/28887440b73dcde4fdbaefe4d507e857 Google Scholar
  53. 53.
    Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi: 10.1016/S0263-8223(02)00042-9, http://www.sciencedirect.com/science/article/B6TWP-45XTP9W-N/2/07b9a065ac866d8869a4240deb918851
  54. 54.
    Lee J, Kim J, Cheong C (1999) Piezoelectric smart structures for noise reduction in a cabin. J Mech Sci Technol 13:451–458. doi: 10.1007/BF02947714 Google Scholar
  55. 55.
    Li S, Kouvaritakis B, Cannon M (2010) Improvements in the efficiency of linear MPC. Automatica 46(1):226–229. doi: 10.1016/j.automatica.2009.10.010, http://www.sciencedirect.com/science/article/B6V21-4XGCHXB-3/2/20a93fa6dd4fb88469638ac3bc2fe729 Google Scholar
  56. 56.
    Lin LC, Lee TE (1997) Integrated PID-type learning and fuzzy control for flexible-joint manipulators. J Intell Rob Syst 18:47–66. doi: 10.1023/A:1007942528058 Google Scholar
  57. 57.
    Liu J, Liu K (2006) A tunable electromagnetic vibration absorber: Characterization and application. J Sound Vib 295(3–5):708–724. doi: 10.1016/j.jsv.2006.01.033, http://www.sciencedirect.com/science/article/B6WM3-4JP9FXN-6/2/0b961839d0b922bbd94dcc5ce5c5f9e4 Google Scholar
  58. 58.
    Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055. doi: 10.1007/s00170-004-2433-8 Google Scholar
  59. 59.
    Luo T, Hu Y (2002) Vibration suppression techniques for optical inter-satellite communications. In: IEEE 2002 international conference on communications, circuits and systems and west sino expositions, vol 1, pp 585–589. doi: 10.1109/ICCCAS.2002.1180687
  60. 60.
    Luo Y, Xie S, Zhang X (2008) The actuated performance of multi-layer piezoelectric actuator in active vibration control of honeycomb sandwich panel. J Sound Vib 317(3–5):496–513. doi: 10.1016/j.jsv.2008.03.047, http://www.sciencedirect.com/science/article/B6WM3-4SJR2GN-1/2/04c4aad317afe74e20e6f5810f689674
  61. 61.
    Maciejowski JM (2000) Predictive control with constraints, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  62. 62.
    Mahmoodi SN, Jalili N, Khadem SE (2008) An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J Sound Vib 311(3–5):1409–1419. doi: 10.1016/j.jsv.2007.09.027, http://www.sciencedirect.com/science/article/B6WM3-4R113SP-1/2/4baf1df12aa15dbfcbdd0e4f13149b17
  63. 63.
    Marzbanrad J, Ahmadi G, Jha R (2004) Optimal preview active control of structures during earthquakes. Eng Struct 26(10):1463–1471. doi: 10.1016/j.engstruct.2004.05.010, http://www.sciencedirect.com/science/article/B6V2Y-4CYNR00-1/2/271b4c49fa053fb1a95d5df632c701c8 Google Scholar
  64. 64.
    Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36(6):789–814MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    MIDÉ Technology Corporation (2007) QuickPack Actuator Catalog. MIDÉ Technology Corporation, MedfordGoogle Scholar
  66. 66.
    MIDÉ Technology Corporation (2007) QuickPack Power Amplifier. Operator’s manual, MIDÉ Technology Corporation, MedfordGoogle Scholar
  67. 67.
    Moon SJ, Lim CW, Kim BH, Park Y (2007) Structural vibration control using linear magnetostrictive actuators. J Sound Vib 302(4–5):875–891. doi: 10.1016/j.jsv.2006.12.023, http://www.sciencedirect.com/science/article/B6WM3-4N2M6HH-5/2/417522adfca8640acfa76e890ae0533c Google Scholar
  68. 68.
    Moshrefi-Torbati M, Keane A, Elliott S, Brennan M, Anthony D, Rogers E (2006) Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators. J Sound Vib 292(1–2):203–220. doi: 10.1016/j.jsv.2005.07.040, http://www.sciencedirect.com/science/article/pii/S0022460X05005171
  69. 69.
    Neat G, Melody J, Lurie B (1998) Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans Control Syst Technol 6(6):689–700. doi: 10.1109/87.726529 Google Scholar
  70. 70.
    Park JS, Kim JH, Moon SH (2005) Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibers. Composites Part B 36(8):627–636. doi: 10.1016/j.compositesb.2004.11.007, http://www.sciencedirect.com/science/article/B6TWK-4GDKB5G-1/2/b308d31dc4dc49f9e53da0c459ff746a
  71. 71.
    Pistikopoulos EN, Georgiadis MC, Dua V (eds) (2007) Multi-parametric model-based control, vol 2, 1st edn. Wiley-VCH Verlag GmbH & Co., WeinheimGoogle Scholar
  72. 72.
    Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  73. 73.
    Rashid A, Nicolescu CM (2006) Active vibration control in palletised workholding system for milling. Int J Mach Tools Manuf 46(12–13):1626–1636. doi: 10.1016/j.ijmachtools.2005.08.020, http://www.sciencedirect.com/science/article/B6V4B-4HGD76C-2/2/273540b1466f54bf47cc11a241007364 Google Scholar
  74. 74.
    Rossiter JA (2003) Model-based predictive control: a practical approach, 1st edn. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Seba B, Nedeljkovic N, Paschedag J, Lohmann B (2005) \({\fancyscript{H}}_{\infty}\) feedback control and Fx-LMS feedforward control for car engine vibration attenuation. Appl Acoust 66(3):277–296. doi: 10.1016/j.apacoust.2004.07.015, http://www.sciencedirect.com/science/article/B6V1S-4DTKD2W-1/2/d413b004e2a2e14e9df7fcf75f2df02f
  76. 76.
    Shan J, Liu HT, Sun D (2005) Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4):487–503. doi: 10.1016/j.mechatronics.2004.10.003, http://www.sciencedirect.com/science/article/B6V43-4DR87K7-4/2/2dd311fdd61308e1415cd45c1edc3076 Google Scholar
  77. 77.
    Spangler R (2007) Piezo sensor techical note, 2nd edn. MIDÉ Technology Corporation, MedfordGoogle Scholar
  78. 78.
    Sumali H, Meissner K, Cudney HH (2001) A piezoelectric array for sensing vibration modal coordinates. Sens Actuators A 93(2):123–131. doi:  10.1016/S0924-4247(01)00644-6, http://www.sciencedirect.com/science/article/B6THG-43N2J67-5/2/b7e5396a71e7ee7fae9ef93cb254b7b7
  79. 79.
    Sun D, Mills JK, Shan J, Tso SK (2004) A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4):381–401. doi: 10.1016/S0957-4158(03)00066-7, http://www.sciencedirect.com/science/article/B6V43-49DN5K4-1/2/fa21df547f182ad568cefb2ddf3a6352 Google Scholar
  80. 80.
    Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton–Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, OxfordGoogle Scholar
  81. 81.
    Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the eleventh IASTED international conference on control and applications, CambridgeGoogle Scholar
  82. 82.
    Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control conference, BudapestGoogle Scholar
  83. 83.
    Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, InnsbruckGoogle Scholar
  84. 84.
    The Mathworks (2007) Matlab signal processing blockset v6.6 (R2007b). Software. The Mathworks Inc., NatickGoogle Scholar
  85. 85.
    The MathWorks (2008) xPC target for use with real-time workshop, 6th edn. The Mathworks Inc., NatickGoogle Scholar
  86. 86.
    The Mathworks (2011) Matlab control system toolbox v9.1 (R2011a). Software. The Mathworks Inc., Natick. http://www.mathworks.com/products/control/
  87. 87.
    The Mathworks (2011) Matlab system identification toolbox v7.4.2 (R2011a). Software. The Mathworks Inc., Natick http://www.mathworks.com/help/toolbox/ident/
  88. 88.
    Tso SK, Yang TW, Xu WL, Sun ZQ (2003) Vibration control for a flexible-link robot arm with deflection feedback. Int J Nonlinear Mech 38(1):51–62. doi: 10.1016/S0020-7462(01)00040-3, http://www.sciencedirect.com/science/article/B6TJ2-46BSCBF-5/2/db9a6ea06f0106fae187a067a96b1888 Google Scholar
  89. 89.
    Vasques C, Rodrigues JD (2006) Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies. Comput Struct 84(22–23):1402–1414. doi: 10.1016/j.compstruc.2006.01.026, http://www.sciencedirect.com/science/article/B6V28-4K4219V-1/2/fc83fdc87b19e200d95c2b596f8f0201, Composite Adaptive Structures: Modelling and SimulationGoogle Scholar
  90. 90.
    Wills A, Bates D, Fleming A, Ninness B, Moheimani R (2005) Application of MPC to an active structure using sampling rates up to 25 kHz. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference, CDC-ECC ’05, pp 3176–3181. doi: 10.1109/CDC.2005.1582650
  91. 91.
    Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRefGoogle Scholar
  92. 92.
    Wilson DG, Robinett RD, Parker GG, Starr GP (2002) Augmented sliding mode control for flexible link manipulators. J Intell Rob Syst 34:415–430. doi: 10.1023/A:1019635709331 Google Scholar
  93. 93.
    Yim W (1996) Modified nonlinear predictive control of elastic manipulators. In: Proceedings of the 1996 IEEE international conference on robotics and automation, vol 3, pp 2097–2102. doi: 10.1109/ROBOT.1996.506180
  94. 94.
    Zmeu K, Shipitko E (2005) Predictive controller design with offline model learning for flexible beam control. In: Proceedings of the 2005 international conference on physics and control, pp 345–350. doi: 10.1109/PHYCON.2005.1514005

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Gergely Takács
    • 1
  • Boris Rohal’-Ilkiv
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Automation, Measurement and Applied InformaticsSlovak University of Technology in BratislavaBratislava 1Slovakia

Personalised recommendations