Skip to main content

Experimental Model Predictive Vibration Control

  • Chapter
  • First Online:
Model Predictive Vibration Control

Abstract

This chapter presents the results of experiments comparing different computationally efficient model predictive control (MPC) methods applied to a laboratory device, demonstrating the active vibration control (AVC) of lightly damped mechanical structures. Because of the combination of long prediction horizons, short sampling times and large actuator-disturbance asymmetry, the implementation of the predictive control strategy on lightly damped vibrating structures is highly demanding. The vibration damping effect and online timing properties of model predictive control algorithms such as infinite horizon cost dual-mode quadratic programming based MPC (QPMPC), pre-computed explicit multi-parametric programming based MPC (MPMPC), minimum-time MPMPC and the very efficient but suboptimal Newton–Raphson based MPC (NRMPC); all with guaranteed stability and constraint feasibility are analyzed in different disturbance and loading scenarios. All MPC methods along with the baseline linear quadratic (LQ) controller decrease vibration settling to equilibrium by an order of magnitude time. The damping effect of all investigated MPC strategies is comparable with a slight decrease in performance for the suboptimal minimum-time MPMPC and NRMPC controllers. Due to the excessive online computational needs of QPMPC, it is a very unlikely candidate for lightly damped vibrating systems given currently available hardware. The online timing analysis presented here demonstrates that MPMPC provides significantly shorter online execution times, however its suboptimal minimum-time version does not bring a convincing improvement. NRMPC can provide online execution times on par with linear quadratic controllers; however, its suboptimality becomes excessive with increasing prediction model orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sect. 5.1.1 for more details.

  2. 2.

    Materializing as disproportionately high control moves, severely exceeding constraints.

  3. 3.

    See Sect. 5.5.4.2 for exact target computer specifications and Sect. 12.5 for timing properties.

  4. 4.

    See Sect. 5.5.5 for the description of the shaker and shaker amplifier.

  5. 5.

    See Sect. 5.1.4 for the designation and placement of transducers.

  6. 6.

    Note that \(\xi\) (xi) is used as a relative factor comparing the peak amplitudes in the periodogram and is not to be confused with the damping factor commonly denoted by \(\zeta\) (zeta).

  7. 7.

    Approximately 0.2 mm, also depending on the frequency.

  8. 8.

    At 40 Hz excitation, the difference between mean uncontrolled vibration and NRMPC controlled is approximately 0.01 mm. This is below the noise level normally encountered at the given laboratory environment.

  9. 9.

    Note that the timing data for QPMPC featured in this section is given for the qpOASES sequential solver module. The sequential qpOASES_SQProblem module is computationally more efficient than the constant qpOASES_QProblem, given that the MPC formulation uses variable parameters [23]. The timing experiments featured here assume fixed prediction \({\mathbf{H}}\)\({\mathbf{G}}\) and fixed constraint matrices \({\mathbf{A}}_c\)\({\mathbf{b}}_0\)\({\mathbf{B}}_x\). The task execution times shown in the following tables and figures include only the execution time of the sequential QP solver and do not enclose any additional operation, thus QPMPC is directly comparable to the other efficient MPC methods. By using the non-sequential solver (qpOASES_QProblem), in theory the QPMPC method could perform slightly better than it is suggested by the timing data featured here. Nevertheless, this does not influence any of the conclusions implied by the analysis featured in the following pages.

  10. 10.

    Compared to the experiment in Sect. 12.2, minimal execution time given by the LQ controller is increased by shaker controls and additional data logging.

  11. 11.

    This is five times longer sampling than the one utilized in this work. Moreover, Ferrau et al. utilized an 5 step prediction model instead of the 75 step assumed in this work. Note that the model in [24] has been more complex than the one used here.

  12. 12.

    See Sect. 11.1 for prediction horizon lengths and Sect. 11.2 for a simulation results and discussion involving MPMPC properties on the experimental system.

  13. 13.

    See Sects. 10.3.1, B.3.2.1 and B.2.3.2 for answers.

  14. 14.

    See Sect. 11.3 for the numerical issues causing invariance condition violation and Sect. 11.4 for optimality issues.

References

  1. Agrawal BN, Bang H (1996) Adaptive structures for large precision antennas. Acta Astronaut 38(3):175–183. doi:10.1016/0094-5765(96)00062-8, http://www.sciencedirect.com/science/article/B6V1N-3VTW8Y7-3/2/a53f7c4acb3ee1541568e0db4062d985

    Google Scholar 

  2. Allaire PE, Lewis DW, Knight JD (1983) Active vibration control of a single mass rotor on flexible supports. J Franklin Inst 315(3):211–222. doi: 10.1016/0016-0032(83)90025-X, http://www.sciencedirect.com/science/article/B6V04-45D9SMR-M/2/62024de7918cc7b0b23d9703691ab67a

  3. Amer Y, Bauomy H (2009) Vibration reduction in a 2DOF twin-tail system to parametric excitations. Commun Nonlinear Sci Numer Simul 14(2):560–573. doi:10.1016/j.cnsns.2007.10.005, http://www.sciencedirect.com/science/article/B6X3D-4PYP723-2/2/b9d5375168fadb0b4e67857e92948bfc

    Google Scholar 

  4. Bemporad A, Bozinis NA, Dua V, Morari M, Pistikopoulos EN (2000) Model predictive control: a multi-parametric programming approach. In: Pierucci S (ed) European symposium on computer aided process engineering-10, Computer aided chemical engineering, vol 8. Elsevier, Amsterdam, pp 301–306. doi: 10.1016/S1570-7946(00)80052-8, http://www.sciencedirect.com/science/article/B8G5G-4NK5JX8-1V/2/76240158054cdb0fb1454f6e0eaa5dfe

  5. Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20. doi:10.1016/S0005-1098(01)00174-1, http://www.sciencedirect.com/science/article/B6V21-44B8B5J-2/2/2a3176155886f92d43afdf1dccd128a6

    Google Scholar 

  6. Bittanti S, Cuzzola FA (2002) Periodic active control of vibrations in helicopters: a gain-scheduled multi-objective approach. Control Eng Pract 10(10):1043–1057. doi:10.1016/S0967-0661(02)00052-7, http://www.sciencedirect.com/science/article/B6V2H-45KSPJJ-3/2/9647861ce849d131c7d4b90cdb964751

  7. Bohn C, Cortabarria A, Härtel V, Kowalczyk K (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039. doi:10.1016/j.conengprac.2003.09.008, http://www.sciencedirect.com/science/article/B6V2H-49Y3VWS-1/2/dd7bcefd1618f3820896ddbd6dce7430, in Special Section on Emerging Technologies for Active Noise and Vibration Control Systems

  8. Borelli F, Baotic M, Bemporad A, Morari M (2003) An efficient algorithm for computing the state feedback optimal control law for discrete time hybrid systems. In: Proceeding of the American control conference, Denver, Colorado

    Google Scholar 

  9. Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mechanism. J Intell Rob Syst 58:125–147. doi:10.1007/s10846-009-9347-5

    Google Scholar 

  10. Cannon M, Kouvaritakis B (2005) Optimizing prediction dynamics for robust MPC. IEEE Trans Autom Control 50(11):1892–1897. doi:10.1109/TAC.2005.858679

    Article  MathSciNet  Google Scholar 

  11. Carotti A, Lio G (1991) Experimental active control: bench tests on controller units. Eng Struct 13(3):242–252. doi:10.1016/0141-0296(91)90036-C, http://www.sciencedirect.com/science/article/B6V2Y-4829VWB-CG/2/4414a8cb4321f4e346ca04468e610264

  12. Carra S, Amabili M, Ohayon R, Hutin P (2008) Active vibration control of a thin rectangular plate in air or in contact with water in presence of tonal primary disturbance. Aerosp Sci Technol 12(1):54–61. doi:10.1016/j.ast.2007.10.001, http://www.sciencedirect.com/science/article/B6VK2-4PXDM8C-1/2/db87a30acd2bfaefa3f97e3896bc9232, Aircraft Noise Reduction

  13. Chang CS, Liu TS (2007) LQG controller for active vibration absorber in optical disk drive. IEEE Trans Magn 43(2):799–801. doi:10.1109/TMAG.2006.888417

    Google Scholar 

  14. Chen H, Allgöver F (1998) A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10):1205–1217

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen L, Pan J, Cai G (2008) Active control of a flexible cantilever plate with multiple time delays. Acta Mech Solida Sinica 21(3):257–266. doi:10.1007/s10338-008-0829-y, http://www.sciencedirect.com/science/article/B984H-4W93GVV-8/2/ece55a791fb3bb182fa01fde13bced38

    Google Scholar 

  16. Choi S, Park Y, Fukuda T (1998) A proof-of-concept investigation on active vibration control of hybrid smart structures. Mechatronics 8(6):673–689. doi: 10.1016/S0957-4158(98)00029-4, http://www.sciencedirect.com/science/article/B6V43-3W18XD5-3/2/7d21a042ed91fd289d4f11eb0b5dc52c

  17. Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi:10.1016/j.ijmecsci.2007.08.001, http://www.sciencedirect.com/science/article/B6V49-4PD4XHC-1/2/c491dc4a4a881e38b0e20ceef7206dec

    Google Scholar 

  18. Eissa M, Bauomy H, Amer Y (2007) Active control of an aircraft tail subject to harmonic excitation. Acta Mech Sin 23:451–462. doi:10.1007/s10409-007-0077-2

    Google Scholar 

  19. El-Badawy AA, Nayfeh AH (2001) Control of a directly excited structural dynamic model of an F-15 tail section. J Franklin Inst 338(2–3):133–147. doi: 10.1016/S0016-0032(00)00075-2, http://www.sciencedirect.com/science/article/B6V04-42HNMDV-3/2/e3bf6f797834c8e8638324be88fb78f7

  20. Eski I, Yıldırım S (2009) Vibration control of vehicle active suspension system using a new robust neural network control system. Simul Modell Pract Theory 17(5):778–793. doi:10.1016/j.simpat.2009.01.004, http://www.sciencedirect.com/science/article/B6X3C-4VHSDJ4-1/2/d2fe946695b369279d2e1229f15a61bd

  21. Ferreau HJ (2006) An online active set strategy for fast solution of parametric quadratic programs with applications to predictive engine control. Master’s thesis, University of Heidelberg

    Google Scholar 

  22. Ferreau HJ (2011) qpOASES—Online Active Set Strategy. Leuven, http://www.qpoases.org

  23. Ferreau HJ (2011) qpOASES user’s manual. Optimization in Engineering Center (OPTEC) and Department of Electrical Engineering, K. U. Leuven, Leuven

    Google Scholar 

  24. Ferreau HJ, Ortner P, Langthaler P, del Re L, Diehl M (2007) Predictive control of a real-world Diesel engine using an extended online active set strategy. Annu Rev Control 31(2):293–301. doi:10.1016/j.arcontrol.2007.09.001, http://www.sciencedirect.com/science/article/B6V0H-4R05C2B-2/2/23db757b09f804365ba12dc1844992d9

  25. Ferreau HJ, Bock HG, Diehl M (2008) An online active set strategy to overcome the limitations of explicit MPC. Int J Robust Nonlinear Control 18(8):816–830

    Article  MathSciNet  Google Scholar 

  26. Fischer D, Isermann R (2004) Mechatronic semi-active and active vehicle suspensions. Control Eng Pract 12(11):1353–1367. doi:10.1016/j.conengprac.2003.08.003, http://www.sciencedirect.com/science/article/B6V2H-49V1CR4-2/2/0dd89d1b7760e7303a32b5bdd2cbbf9b, Mechatronic Systems

  27. Fung RF, Liu YT, Wang CC (2005) Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib 288(4-5):957–980. doi:10.1016/j.jsv.2005.01.046, http://www.sciencedirect.com/science/article/B6WM3-4G4N5VD-1/2/fc3710f0625ef69f19d16c8778a63e58

  28. Grewal A, Modi VJ (1996) Robust attitude and vibration control of the space station. Acta Astronaut 38(3):139–160. doi:10.1016/0094-5765(96)00073-2, http://www.sciencedirect.com/science/article/B6V1N-3VTW8Y7-1/2/f021cc3321a4dd86a85907f0e1bc3e4c

    Google Scholar 

  29. Guclu R (2006) Sliding mode and PID control of a structural system against earthquake. Math Comput Modell 44(1–2):210–217. doi:10.1016/j.mcm.2006.01.014, http://www.sciencedirect.com/science/article/B6V0V-4JP9FV5-1/2/0900f85ba6e764d746c054ac040aff77 (Advances in business modeling and decision technologies, pp 1–95)

  30. Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(1):311–323

    Article  Google Scholar 

  31. Hassapis G (2003) Implementation of model predictive control using real-time multiprocessing computing. Microprocess Microsyst 27(7):327–340. doi: 10.1016/S0141-9331(03)00063-2, http://www.sciencedirect.com/science/article/B6V0X-48FK01C-1/2/e1b3f9ea4bddf2d564bd5bcfe4a6506a

  32. He XQ, Ng TY, Sivashanker S, Liew KM (2001) Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct 38(9):1641–1655. doi:10.1016/S0020-7683(00)00050-0, http://www.sciencedirect.com/science/article/B6VJS-41WB6JY-11/2/131df87366732db91b65cd1418c2d1d9

  33. Ho CC, Ma CK (2007) Active vibration control of structural systems by a combination of the linear quadratic Gaussian and input estimation approaches. J Sound Vib 301(3-5):429–449. doi:10.1016/j.jsv.2005.12.061, http://www.sciencedirect.com/science/article/B6WM3-4MV19X0-1/2/39db74e66a9494e834cdab9f0da4b886

  34. Hong SR, Choi SB, Han MS (2002) Vibration control of a frame structure using electro-rheological fluid mounts. Int J Mech Sci 44(10):2027–2045. doi:10.1016/S0020-7403(02)00172-8, http://www.sciencedirect.com/science/article/B6V49-47BX3RX-4/2/53a10ce8cbf8dfa679c34e04beb688e4

  35. Hsu YC, Wu CC, Lee CC, Cao GZ, Shen IY (2004) Demonstration and characterization of PZT thin-film sensors and actuators for meso- and micro-structures. Sens Actuators A 116(3):369–377. doi:10.1016/j.sna.2004.05.024, http://www.sciencedirect.com/science/article/B6THG-4CS4GDG-1/2/87f204ac4c1f3ffc13634c2fdd68a2f6

  36. Hu Q (2009) A composite control scheme for attitude maneuvering and elastic mode stabilization of flexible spacecraft with measurable output feedback. Aerosp Sci Technol 13(2–3):81–91. doi:10.1016/j.ast.2007.06.007, http://www.sciencedirect.com/science/article/B6VK2-4P96269-2/2/5fbc47249fdd3f1963c5ba856f071c55

  37. Imsland L, Bar N, Foss BA (2005) More efficient predictive control. Automatica 41(8):1395–1403. doi:10.1016/j.automatica.2005.03.010, http://www.sciencedirect.com/science/article/B6V21-4G7NT35-1/2/52a9590bfe1ccc2a9561165c3fbdf872

    Google Scholar 

  38. Inman DJ (2007) Engineering vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle River

    Google Scholar 

  39. Ji H, Qiu J, Zhu K, Badel A (2010) Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy. J Sound Vib 329(14):2751–2767. doi:10.1016/j.jsv.2010.01.012, http://www.sciencedirect.com/science/article/B6WM3-4YG1R6R-2/2/88406f934e48ccfe56a6188409cc989e

  40. Jnifene A (2007) Active vibration control of flexible structures using delayed position feedback. Syst Control Lett 56(3):215–222. doi:10.1016/j.sysconle.2006.10.005, http://www.sciencedirect.com/science/article/B6V4X-4MJC1V9-1/2/5fe33b4788d9ca97d9a9938bc7742194

    Google Scholar 

  41. Jung WJ, Jeong WB, Hong SR, Choi SB (2004) Vibration control of a flexible beam structure using squeeze-mode ER mount. J Sound Vib 273(1–2):185–199, doi:10.1016/S0022-460X(03)00478-4, http://www.sciencedirect.com/science/article/B6WM3-49DFFMM-1/2/1255ad59eca53b0c021632de61aef0b8

    Google Scholar 

  42. Kang B, Mills JK (2005) Vibration control of a planar parallel manipulator using piezoelectric actuators. J Intell Rob Syst 42:51–70. doi:10.1007/s10846-004-3028-1, http://dx.doi.org/10.1007/s10846-004-3028-1

    Google Scholar 

  43. Kerrigan E, Mayne D (2002) Optimal control of constrained, piecewise affine systems with bounded disturbances. In: Proceedings of the 41st IEEE conference on decision and control, 2002, vol 2, pp 1552–1557. doi:10.1109/CDC.2002.1184740

  44. Kim I, Kim YS (2009) Active vibration control of trim panel using a hybrid controller to regulate sound transmission. Int J Precis Eng Manuf 10:41–47. doi:10.1007/s12541-009-0007-2, http://dx.doi.org/10.1007/s12541-009-0007-2

  45. Kouvaritakis B, Rossiter J, Schuurmans J (2000) Efficient robust predictive control. IEEE Trans Autom Control 45(8):1545–1549. doi:10.1109/9.871769

    Article  MathSciNet  MATH  Google Scholar 

  46. Kouvaritakis B, Cannon M, Rossiter J (2002) Who needs QP for linear MPC anyway? Automatica 38:879–884. doi:10.1016/S0005-1098(01)00263-1, http://www.sciencedirect.com/science/article/pii/S0005109801002631

    Article  MathSciNet  MATH  Google Scholar 

  47. Kouvaritakis B, Li S, Cannon M (2010) A line search improvement of efficient MPC. Automatica 46(11):1920–1924. doi:10.1016/j.automatica.2010.07.003, http://www.sciencedirect.com/science/article/B6V21-50NH0BX-3/2/0b4491d922a7d04d1b0315edae0e8944

    Google Scholar 

  48. Krishnaswamy K, Rajamani R, Woo J, Cho Y (2005) Structural vibration control for broadband noise attenuation in enclosures. J Mech Sci Technol 19:1414–1423. doi:10.1007/BF03023900

    Google Scholar 

  49. Kvasnica M (2009) Real-time model predictive control via multi-parametric programming: theory and tools, 1st edn. VDM Verlag, Saarbrücken

    Google Scholar 

  50. Kvasnica M, Grieder P, Baotic M, Christophersen FJ (2006) Multi-Parametric Toolbox (MPT). Extended documentation

    Google Scholar 

  51. Kwak MK, Heo S (2007) Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller. J Sound Vib 304(1–2):230–245. doi:10.1016/j.jsv.2007.02.021, http://www.sciencedirect.com/science/article/B6WM3-4NH6N96-2/2/ca7b43602b9d052e388f4b2a28f1ebae

    Google Scholar 

  52. Landau ID, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied to an active suspension–an internal model principle approach. Automatica 41(4):563–574. doi:10.1016/j.automatica.2004.08.022, http://www.sciencedirect.com/science/article/B6V21-4FB3X55-3/2/28887440b73dcde4fdbaefe4d507e857

    Google Scholar 

  53. Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi:10.1016/S0263-8223(02)00042-9, http://www.sciencedirect.com/science/article/B6TWP-45XTP9W-N/2/07b9a065ac866d8869a4240deb918851

  54. Lee J, Kim J, Cheong C (1999) Piezoelectric smart structures for noise reduction in a cabin. J Mech Sci Technol 13:451–458. doi:10.1007/BF02947714

    Google Scholar 

  55. Li S, Kouvaritakis B, Cannon M (2010) Improvements in the efficiency of linear MPC. Automatica 46(1):226–229. doi:10.1016/j.automatica.2009.10.010, http://www.sciencedirect.com/science/article/B6V21-4XGCHXB-3/2/20a93fa6dd4fb88469638ac3bc2fe729

    Google Scholar 

  56. Lin LC, Lee TE (1997) Integrated PID-type learning and fuzzy control for flexible-joint manipulators. J Intell Rob Syst 18:47–66. doi:10.1023/A:1007942528058

    Google Scholar 

  57. Liu J, Liu K (2006) A tunable electromagnetic vibration absorber: Characterization and application. J Sound Vib 295(3–5):708–724. doi:10.1016/j.jsv.2006.01.033, http://www.sciencedirect.com/science/article/B6WM3-4JP9FXN-6/2/0b961839d0b922bbd94dcc5ce5c5f9e4

    Google Scholar 

  58. Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055. doi:10.1007/s00170-004-2433-8

    Google Scholar 

  59. Luo T, Hu Y (2002) Vibration suppression techniques for optical inter-satellite communications. In: IEEE 2002 international conference on communications, circuits and systems and west sino expositions, vol 1, pp 585–589. doi:10.1109/ICCCAS.2002.1180687

  60. Luo Y, Xie S, Zhang X (2008) The actuated performance of multi-layer piezoelectric actuator in active vibration control of honeycomb sandwich panel. J Sound Vib 317(3–5):496–513. doi:10.1016/j.jsv.2008.03.047, http://www.sciencedirect.com/science/article/B6WM3-4SJR2GN-1/2/04c4aad317afe74e20e6f5810f689674

  61. Maciejowski JM (2000) Predictive control with constraints, 1st edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  62. Mahmoodi SN, Jalili N, Khadem SE (2008) An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. J Sound Vib 311(3–5):1409–1419. doi:10.1016/j.jsv.2007.09.027, http://www.sciencedirect.com/science/article/B6WM3-4R113SP-1/2/4baf1df12aa15dbfcbdd0e4f13149b17

  63. Marzbanrad J, Ahmadi G, Jha R (2004) Optimal preview active control of structures during earthquakes. Eng Struct 26(10):1463–1471. doi:10.1016/j.engstruct.2004.05.010, http://www.sciencedirect.com/science/article/B6V2Y-4CYNR00-1/2/271b4c49fa053fb1a95d5df632c701c8

    Google Scholar 

  64. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36(6):789–814

    Article  MathSciNet  MATH  Google Scholar 

  65. MIDÉ Technology Corporation (2007) QuickPack Actuator Catalog. MIDÉ Technology Corporation, Medford

    Google Scholar 

  66. MIDÉ Technology Corporation (2007) QuickPack Power Amplifier. Operator’s manual, MIDÉ Technology Corporation, Medford

    Google Scholar 

  67. Moon SJ, Lim CW, Kim BH, Park Y (2007) Structural vibration control using linear magnetostrictive actuators. J Sound Vib 302(4–5):875–891. doi:10.1016/j.jsv.2006.12.023, http://www.sciencedirect.com/science/article/B6WM3-4N2M6HH-5/2/417522adfca8640acfa76e890ae0533c

    Google Scholar 

  68. Moshrefi-Torbati M, Keane A, Elliott S, Brennan M, Anthony D, Rogers E (2006) Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators. J Sound Vib 292(1–2):203–220. doi:10.1016/j.jsv.2005.07.040, http://www.sciencedirect.com/science/article/pii/S0022460X05005171

  69. Neat G, Melody J, Lurie B (1998) Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans Control Syst Technol 6(6):689–700. doi:10.1109/87.726529

    Google Scholar 

  70. Park JS, Kim JH, Moon SH (2005) Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibers. Composites Part B 36(8):627–636. doi:10.1016/j.compositesb.2004.11.007, http://www.sciencedirect.com/science/article/B6TWK-4GDKB5G-1/2/b308d31dc4dc49f9e53da0c459ff746a

  71. Pistikopoulos EN, Georgiadis MC, Dua V (eds) (2007) Multi-parametric model-based control, vol 2, 1st edn. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  72. Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  73. Rashid A, Nicolescu CM (2006) Active vibration control in palletised workholding system for milling. Int J Mach Tools Manuf 46(12–13):1626–1636. doi:10.1016/j.ijmachtools.2005.08.020, http://www.sciencedirect.com/science/article/B6V4B-4HGD76C-2/2/273540b1466f54bf47cc11a241007364

    Google Scholar 

  74. Rossiter JA (2003) Model-based predictive control: a practical approach, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  75. Seba B, Nedeljkovic N, Paschedag J, Lohmann B (2005) \({\fancyscript{H}}_{\infty}\) feedback control and Fx-LMS feedforward control for car engine vibration attenuation. Appl Acoust 66(3):277–296. doi:10.1016/j.apacoust.2004.07.015, http://www.sciencedirect.com/science/article/B6V1S-4DTKD2W-1/2/d413b004e2a2e14e9df7fcf75f2df02f

  76. Shan J, Liu HT, Sun D (2005) Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4):487–503. doi:10.1016/j.mechatronics.2004.10.003, http://www.sciencedirect.com/science/article/B6V43-4DR87K7-4/2/2dd311fdd61308e1415cd45c1edc3076

    Google Scholar 

  77. Spangler R (2007) Piezo sensor techical note, 2nd edn. MIDÉ Technology Corporation, Medford

    Google Scholar 

  78. Sumali H, Meissner K, Cudney HH (2001) A piezoelectric array for sensing vibration modal coordinates. Sens Actuators A 93(2):123–131. doi: 10.1016/S0924-4247(01)00644-6, http://www.sciencedirect.com/science/article/B6THG-43N2J67-5/2/b7e5396a71e7ee7fae9ef93cb254b7b7

  79. Sun D, Mills JK, Shan J, Tso SK (2004) A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4):381–401. doi:10.1016/S0957-4158(03)00066-7, http://www.sciencedirect.com/science/article/B6V43-49DN5K4-1/2/fa21df547f182ad568cefb2ddf3a6352

    Google Scholar 

  80. Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton–Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, Oxford

    Google Scholar 

  81. Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the eleventh IASTED international conference on control and applications, Cambridge

    Google Scholar 

  82. Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control conference, Budapest

    Google Scholar 

  83. Takács G, Rohal’-Ilkiv B (2009) Newton–Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, Innsbruck

    Google Scholar 

  84. The Mathworks (2007) Matlab signal processing blockset v6.6 (R2007b). Software. The Mathworks Inc., Natick

    Google Scholar 

  85. The MathWorks (2008) xPC target for use with real-time workshop, 6th edn. The Mathworks Inc., Natick

    Google Scholar 

  86. The Mathworks (2011) Matlab control system toolbox v9.1 (R2011a). Software. The Mathworks Inc., Natick. http://www.mathworks.com/products/control/

  87. The Mathworks (2011) Matlab system identification toolbox v7.4.2 (R2011a). Software. The Mathworks Inc., Natick http://www.mathworks.com/help/toolbox/ident/

  88. Tso SK, Yang TW, Xu WL, Sun ZQ (2003) Vibration control for a flexible-link robot arm with deflection feedback. Int J Nonlinear Mech 38(1):51–62. doi:10.1016/S0020-7462(01)00040-3, http://www.sciencedirect.com/science/article/B6TJ2-46BSCBF-5/2/db9a6ea06f0106fae187a067a96b1888

    Google Scholar 

  89. Vasques C, Rodrigues JD (2006) Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies. Comput Struct 84(22–23):1402–1414. doi:10.1016/j.compstruc.2006.01.026, http://www.sciencedirect.com/science/article/B6V28-4K4219V-1/2/fc83fdc87b19e200d95c2b596f8f0201, Composite Adaptive Structures: Modelling and Simulation

    Google Scholar 

  90. Wills A, Bates D, Fleming A, Ninness B, Moheimani R (2005) Application of MPC to an active structure using sampling rates up to 25 kHz. In: 44th IEEE conference on decision and control, 2005 and 2005 European control conference, CDC-ECC ’05, pp 3176–3181. doi:10.1109/CDC.2005.1582650

  91. Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12

    Article  Google Scholar 

  92. Wilson DG, Robinett RD, Parker GG, Starr GP (2002) Augmented sliding mode control for flexible link manipulators. J Intell Rob Syst 34:415–430. doi:10.1023/A:1019635709331

    Google Scholar 

  93. Yim W (1996) Modified nonlinear predictive control of elastic manipulators. In: Proceedings of the 1996 IEEE international conference on robotics and automation, vol 3, pp 2097–2102. doi:10.1109/ROBOT.1996.506180

  94. Zmeu K, Shipitko E (2005) Predictive controller design with offline model learning for flexible beam control. In: Proceedings of the 2005 international conference on physics and control, pp 345–350. doi:10.1109/PHYCON.2005.1514005

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Takács, G., Rohal’-Ilkiv, B. (2012). Experimental Model Predictive Vibration Control. In: Model Predictive Vibration Control. Springer, London. https://doi.org/10.1007/978-1-4471-2333-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2333-0_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2332-3

  • Online ISBN: 978-1-4471-2333-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics