Skip to main content

Stochastic Ordinary Differential and Difference Equations

  • Chapter
  • First Online:
  • 2845 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Summary Methods are developed for solving ordinary differential and difference equations with random coefficients and/or input. Following an introductory section (Sect. 1), we present methods for solving equations with deterministic coefficients and random input (Sect. 2), finite difference equations with random coefficients of arbitrary and small uncertainty (Sect. 3), and ordinary differential equations with random coefficients of arbitrary and small uncertainty (Sect. 4). The methods include Monte Carlo simulation, conditional analysis, stochastic reduced order models, stochastic Galerkin, stochastic collocation, Taylor series, and Neumann series. Applications from stochastic stability, noise induced transitions, random vibration, and reliability of degrading systems conclude the chapter (Sect. 5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    Article  MathSciNet  MATH  Google Scholar 

  2. Johnson C (1994) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, New York

    Google Scholar 

  3. Roth Ch (2002) Difference methods for stochastic partial differential equations. ZAMM-Z Angew Math Mech 82:821–830

    Article  MathSciNet  MATH  Google Scholar 

  4. Grigoriu M (2002) Stochastic calculus. Applications in science and engineering. Birkhäuser, Boston

    MATH  Google Scholar 

  5. Csörgő S, Hatvani L (2010) Stability properties of solutions of linear second order differential equations with random coefficients. J Differ Equ 248:21–49

    Article  Google Scholar 

  6. Xie WC (2006) Dynamic stability of structures. Cambridge University Press, New York

    MATH  Google Scholar 

  7. Dzhalladova IA (1998) Investigation of a system of linear differential equations with random coefficients. Ukrainian Math J 50(8):1299–1307

    Article  MathSciNet  Google Scholar 

  8. Lapshin AL (1999) Equations for second moments of solutions of a system of linear differential equations with random semi-Markov coefficients and random input. Ukrainian Math J 51(6):864–873

    Article  MathSciNet  Google Scholar 

  9. Valeev KG, Dzhalladova IA (2002) Derivation of moment equations for solutions of a system difference equations dependent on a semi-Markov process. Ukrainian Math J 54(11):1906–1911

    Article  MathSciNet  Google Scholar 

  10. Valeev KG, Dzhalladova IA (2003) Derivation of moment equations for solutions of a system nonlinear difference equations dependent on a semi-Markov process. Ukrainian Math J 55(6):1043–1041

    Article  MathSciNet  Google Scholar 

  11. Valeev KG, Dzhalladova IA (2004) Second-order moment equations for a system of differential equations with random right-hand side. Ukrainian Math J 56(5):830–834

    Article  MathSciNet  Google Scholar 

  12. Valeev KG, Khalil GS (1997) Investigation of the solutions of linear systems of difference equations with random coefficients. Period Math Hung 35(1-2):139–144

    Article  MathSciNet  MATH  Google Scholar 

  13. Diaz J (1990) Bayesian forecasting for AR(1) models with normal coefficients. Commun Stat Theory Methods 19:229–2246

    Google Scholar 

  14. Nicholls DF (1986) The Box-Jenkins approach to random coefficients autoregressive modelling. J Appl Probab 23:231–240

    Article  MathSciNet  Google Scholar 

  15. Priestley MB (1988) Non-linear and non-stationary time series analysis. Academic Press, New York

    Google Scholar 

  16. Jacobs PA, Lewis PAW (1978) Discrete time series generated by mixtures I: correlation and runs properties. J Roy Stat Soc 40:94–105

    MathSciNet  MATH  Google Scholar 

  17. Grigoriu M (1995) Applied non-Gaussian processes.: examples, theory, simulation, linear random vibration and MATLAB solutions. Prentice Hall, Englewoods Cliffs

    MATH  Google Scholar 

  18. Grigoriu M (1990) Reliability analysis of dynamic Daniels systems with local load sharing rule. J Eng Mech 116:2625–2642

    Article  Google Scholar 

  19. Rychlik I, Grigoriu M (1992) Reliability of Daniels systems with equal load sharing rule subject to stationary Gaussian dynamic loads. Probab Eng Mech 7:113–121

    Article  Google Scholar 

  20. Soong TT, Grigoriu M (1993) Random vibration of mechanical and structural systems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  21. Tarp-Johansen NJ, Ditlevsen O (2001) Time between plastic displacements of elastic-plastic oscillators subject to Gaussian white noise. Probab Eng Mech 16:373–380

    Article  Google Scholar 

  22. Mantegna RN, Stanley HE (2000) An introduction to econophysics correlation and complexity in finance. Cambridge University Press, Cambridge

    Google Scholar 

  23. Melsa JL, Sage AP (1973) An introduction to probability and stochastic processes. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  24. Brockett RW (1970) Finite dimensional linear systems. Wiley, New York

    MATH  Google Scholar 

  25. Apostol TM (1974) Mathematical analysis. Addison-Wesley Publishing Company, Reading

    MATH  Google Scholar 

  26. Grigoriu M (2008) A critical evaluation of closure methods via two simple dynamic systems. J Sound Vib 317(1–2):190–198. doi:10.1016/j.jsv.2008.02.049

    Google Scholar 

  27. Hasofer AM, Grigoriu M (1995) A new perspective on the moment closure method. J Appl Mech 62(2):527–532

    Article  MathSciNet  MATH  Google Scholar 

  28. Fung YC (1965) Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  29. Resnick SI (1992) Adventures in stochastic processes. Birkhäuser, Boston

    MATH  Google Scholar 

  30. Gardiner CW (1985) Handbook of stochastic methods for physics chemistry and the natural sciences, 2nd edn. Springer, New York

    Google Scholar 

  31. Roberts JB, Spanos PD (1990) Random vibration and statistical linearization. Wiley, New York

    MATH  Google Scholar 

  32. Brockwell PJ, Davis RA (1987) Time series: theory and methods. Springer, New York

    MATH  Google Scholar 

  33. Leipus R, Surgailis D (2003) Random coefficients autoregression, regime switching and long memory. Adv Appl Probab 35:737–754

    Article  MathSciNet  MATH  Google Scholar 

  34. Abraham B, Minder ChE (1982) A time series model with random coefficients. Commun Stat Theory Methods 11(12):1381–1391

    Article  MathSciNet  MATH  Google Scholar 

  35. Grigoriu M, Veneziano D, Cornell CA (1979) Probabilistic modelling as decision making. J Eng Mech Div ASCE 105(EM4):585–596

    Google Scholar 

  36. Field RV (2004) Methods for model selection in applied science and engineering. PhD thesis, Cornell University, Ithaca, NY, May (Grigoriu M, thesis supervisor)

    Google Scholar 

  37. Field RV, Grigoriu M (2007) Model selection in applied science and engineering.: A decision-theoretic approach. J Eng Mech 133(7):780–791

    Article  Google Scholar 

  38. Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York

    MATH  Google Scholar 

  39. Raiffa H, Schlaifer R (1961) Applied statistical decision theory. The MIT Press, Cambridge

    Google Scholar 

  40. Babuška I (1971) Error bounds for finite element method. Numerische Mathematik,  

    Google Scholar 

  41. Kloeden PE, Platen E (1992) Numerical solutions of stochastic differential equations. Springer, New York

    Google Scholar 

  42. Cramer H, Leadbetter MR (1967) Stationary and related stochastic processes. Wiley, New York

    MATH  Google Scholar 

  43. Billingsley P, Probability and measure, 3rd edn. Wiley, New York

    Google Scholar 

  44. Lukacs E (1960) Characteristic functions. Number 5 in Griffin’s statistical monographs & courses. Charles Griffin & Company Limited, London

    MATH  Google Scholar 

  45. Babuška IM, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034

    Article  MathSciNet  MATH  Google Scholar 

  46. Foo J, Wan X, Karniadakis E (2008) The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications. J Comput Phys 227:9572–9595

    Article  MathSciNet  MATH  Google Scholar 

  47. Nobile F, Tempone R, Webster CG (2008) An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2411–1442

    Article  MathSciNet  MATH  Google Scholar 

  48. Hildebrand FB (1965) Methods of applied mathematics. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  49. Kanwal RP (1971) Linear integral equations. Theory and technique. Academic Press, New York

    MATH  Google Scholar 

  50. Tricomi FG (1957) Integral equations. Dover Publications, New York

    MATH  Google Scholar 

  51. Ariaratnam ST, Abdelrahman NM (2001) Almost sure stochastic stability of viscoelastic plates in supersonic flow. AIAA J 39(3):465–472

    Article  Google Scholar 

  52. Ariaratnam ST, Pi HN (1973) On the first-passage time for envelope crossing for a linear oscillator. Int J Control 18(1):89–96

    Article  MATH  Google Scholar 

  53. Ariaratnam ST, Xie WC (1994) Almost-sure stochastic stability of coupled non-linear oscillators. Int J Non-Linear Mech 29(2):197–204

    Article  MathSciNet  MATH  Google Scholar 

  54. Sidney Resnick (1992) Adventures in stochastic processes. Birkhäuser, Boston

    MATH  Google Scholar 

  55. Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  56. Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes. stochastic models with infinite variance. Birkhäuser, New York

    MATH  Google Scholar 

  57. Grigoriu M (2009) Numerical solution of stochastic differential equations with Poisson and Lévy white noise. Phys Rev E 80. doi:10.1103/PhysRevE.80.026704

  58. Hairer E, Nørsett SP, Warnner G (1993) Solving ordinary differential equations I. Nonstiff Problems, Second Revised Edition. Springer, New York

    Google Scholar 

  59. Brabenec RL (1990) Introduction to real analysis. PWS-KENT Publishing Company, Boston

    MATH  Google Scholar 

  60. Hui-Hsiung Kuo, Introduction to stochastic integration. Springer, New York

    Google Scholar 

  61. Grigoriu M (2010) Linear random vibration by stochastic reduced order models. Int. J Num Methods Eng 82:1537–1559. doi:10.1002/nme.2809

    Google Scholar 

  62. Davenport WB (190)) Probability and random processes. McGraw-Hill Book Company, New York

    Google Scholar 

  63. Madsen HO, Krenk S, Lind NC (1986) Methods of structural safety. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Grigoriu .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grigoriu, M. (2012). Stochastic Ordinary Differential and Difference Equations. In: Stochastic Systems. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-2327-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2327-9_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2326-2

  • Online ISBN: 978-1-4471-2327-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics