Skip to main content

Random Functions

  • Chapter
  • First Online:
Stochastic Systems

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 2827 Accesses

Abstract

General considerations on random functions are followed by essential definitions and properties for these functions. The concepts of weak stationarity and stationarity are defined and illustrated. Mean square continuity, differentiation, and integration as well as spectral and related representations for weakly stationary random functions are discussed extensively. Limitations of second moment calculus are highlighted by the study of sample properties for random functions with finite variance. A broad range of random functions, for example, Gaussian, translation, Markov, martingales, Brownian motion, compound Poisson, and Lévy processes, are examined. Algorithms for generating samples of stationary Gaussian functions, translation models, and non-stationary Gaussian processes conclude our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes. Stochastic models with infinite variance. Birkhäuser, New York

    MATH  Google Scholar 

  2. Adler RJ (1981) The geometry of random fields. Wiley, New York

    MATH  Google Scholar 

  3. Applebaum D (2004) Lévy processes and stochastic calculus. Cambridge University Press, Cambridge

    Google Scholar 

  4. Grigoriu M (1995) Applied non-Gaussian processes: Examples, theory, simulation, linear random vibration, and MATLAB solutions. Prentice Hall, Englewoods Cliffs

    Google Scholar 

  5. Grigoriu M (2002) Stochastic calculus. Applications in science and engineering. Birkhäuser, Boston

    MATH  Google Scholar 

  6. Protter P (1990) Stochastic integration and differential equations. Springer, New York

    MATH  Google Scholar 

  7. Wong E, Hajek B (1985) Stochastic processes in engineering systems. Springer, New York

    Book  MATH  Google Scholar 

  8. Cramer H, Leadbetter MR (1967) Stationary and related stochastic processes. Wiley, New York

    MATH  Google Scholar 

  9. Matérn B (1986) Spatial variation, 2nd edn. Springer, New York

    Google Scholar 

  10. Soong TT, Grigoriu M (1993) Random vibration of mechanical and structural systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  11. Ruymgaart PA, Soong TT (1988) Mathematics of Kalman–Bucy filtering. Springer, New York

    Book  MATH  Google Scholar 

  12. Davenport WB, Root WL (1958) An introduction to the theory of random signals and noise. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  13. Hernández DB (1995) Lectures on probability and second order random fields. World Scientific, London

    MATH  Google Scholar 

  14. Grigoriu M (2006) Evaluation of Karhunen–Loève, spectral, and sampling representations for stochastic processes. J Eng Mech ASCE 132(2):179–189

    Article  Google Scholar 

  15. Lancaster P, Tismenetsky M (1985) The theory of matrices, 2nd edn. Academic Press, New York

    Google Scholar 

  16. Grigoriu M (2009) Existence and construction of translation models for stationary non-Gaussian processes. Probab Eng Mech 24:545–551

    Article  Google Scholar 

  17. Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer, New York

    Book  MATH  Google Scholar 

  18. Grigoriu M (2010) Nearest neighbor probabilistic model for aluminum polycrystals. J Eng Mech 136(7):821–829

    Article  Google Scholar 

  19. Tjøstheim D (1978) Statistical spatial series modelling. Adv Appl Probab 10:130–154

    Article  MATH  Google Scholar 

  20. Tjøstheim D (1981) Autoregressive modeling and spectral analysis of array data in the plane. IEEE Trans Geosci Remote Sens GE19(1):15–24

    Article  Google Scholar 

  21. Whittle P (1954) On stationary processes in the plane. Biometrika 41(3/4):434–449

    Article  MathSciNet  MATH  Google Scholar 

  22. Çinlar E (1975) Introduction to stochastic processes. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  23. Resnick SI (1992) Adventures in stochastic processes. Birkhäuser, Boston

    MATH  Google Scholar 

  24. Ethier SN, Kurtz TG (1986) Markov processes. Characterization and convergence. Wiley, New York

    MATH  Google Scholar 

  25. Steele JM (2001) Stochastic calculus and financial applications. Springer, New York

    Book  MATH  Google Scholar 

  26. Snyder DL (1975) Random point processes. Wiley, New York

    MATH  Google Scholar 

  27. Asmussen S, Rosiński J (2001) Approximations of small jumps of Lévy processes with a view towards simulation. J Appl Probab 38:482–493

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogorodnikov VA, Prigarin SM (1996) Numerical modelling of random processes and fields: Algorithms and applications. VSP BV, Utrecht

    Google Scholar 

  29. Prigarin SM (2001) Spectral models of random fields in Monte Carlo simulation. VSP BV, Boston

    Google Scholar 

  30. Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  31. Tolstov GP (1962) Fourier series. Dover Publications, New York

    Google Scholar 

  32. Grigoriu M (2010) A spectral-based Monte Carlo algorithm for generating samples of nonstationary Gaussian processes. Monte Carlo Methods Appl 16(2):143–165

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Grigoriu .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grigoriu, M. (2012). Random Functions. In: Stochastic Systems. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-2327-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2327-9_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2326-2

  • Online ISBN: 978-1-4471-2327-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics