Bio-Renewable Asphalt Modifiers and Asphalt Substitutes

  • Joana Peralta
  • Mohamed Abdel Raouf
  • Sheng Tang
  • R. Christopher  Williams
Part of the Green Energy and Technology book series (GREEN)


The global asphalt market is to reach 118.4 million metric tons by 2015, according to a January 2011 report by Global Industry Analysis, Inc. The asphalt paving industry accounts for the largest end-use market segment of asphalt. With increasing growth in the developing markets of China, India, Brazil, and Eastern Europe, asphalt will be needed to construct their roadway infrastructure well into the next decade. The increased demand for asphalt, along with the need for improved asphalt materials/pavement performance, creates the opportunity for bio-renewable asphalt modifiers and/or asphalt substitutes.


Natural Rubber Asphalt Binder Crumb Rubber Fast Pyrolysis Performance Grade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rus AZM (2010) Polymers from renewable materials. Sci Prog 93(3):285–300MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J Polym Environ 10(1/2):19–26Google Scholar
  3. 3.
    Demirbas MF, Balat M (2006) Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Conserv Manag 47:2371–2381CrossRefGoogle Scholar
  4. 4.
    Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889CrossRefGoogle Scholar
  5. 5.
    Oasmaa A, Czernik S, Johnson DK, Black S (1999) Stability of wood fast pyrolysis oil. Biomass Bioenergy 7:187–192Google Scholar
  6. 6.
    Oasmaa A, Sipil K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquid: effect of light volatiles on the stability of pyrolysis liquids. Energy Fuels 19(6):2556–2561CrossRefGoogle Scholar
  7. 7.
    Airey GD, Mohammed MH (2008) Rheological properties of polyacrylates used as synthetic road binders. Rheol Acta 47:751–763CrossRefGoogle Scholar
  8. 8.
    Shields J (1976) Adhesives handbook. Butterworth, LondonGoogle Scholar
  9. 9.
    Tan CP, Che Man YB (2002) Comparative differential scanning calorimetric analysis of vegetable oils: effects of heating rate variation. Phytochem Anal 13:129–141CrossRefGoogle Scholar
  10. 10.
    Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin, pp 1–3Google Scholar
  11. 11.
    Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins-natural antioxidants. Bioresour Technol 95:309–317CrossRefGoogle Scholar
  12. 12.
    Goyal HB, Seal D, Saxena RC (2006) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517CrossRefGoogle Scholar
  13. 13.
    Williams RC, Satrio J, Rover M, Brown RC, Teng, S (2009) Utilization of fractionated bio oil in Asphalt. In: DVD-ROM Proceedings of the 88th annual meeting of the transportation research board, Washington, DCGoogle Scholar
  14. 14.
    Ruan Y, Davison RR, Glover CJ (2003) Oxidation and viscosity hardening of polymer-modified asphalts. Energy Fuels 17:991–998CrossRefGoogle Scholar
  15. 15.
    Domke CH, Dacidson RR, Glover CJ (2000) Effect of oxygen pressure on asphalt oxidation kinetics. Ind Eng Chem 39:592–598CrossRefGoogle Scholar
  16. 16.
    Herrington PR, Patrick JE, Ball GFA (1994) Oxidation of roading asphalts. Ind Eng Chem Res 33(11):2801–2809. doi: 10.1021/ie00035a033 CrossRefGoogle Scholar
  17. 17.
    Liu M, Ferry MA, Davidson RR, Glover CJ, Bullin JA (1998) Oxygen uptake as correlated to carbonyl growth in aged asphalt and corbett fractions. Ind Eng Chem 37:4669–4694CrossRefGoogle Scholar
  18. 18.
    Ouyang C, Wang S, Zhang Y, Zhang Y (2006) Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. Polym Degrad Stab 91:795–804CrossRefGoogle Scholar
  19. 19.
    Kandhal PS (1992) Waste materials in hot mix asphalt––an overview, NCAT Report No. 92–6. Auburn University, Auburn, ALGoogle Scholar
  20. 20.
    Sundstrom DW, Klel HE, Daubenspeck TH (1983) Use of byproduct lignins as extenders in asphalt. Ind Eng Chem Prod Res Dev 22:496–500CrossRefGoogle Scholar
  21. 21.
    Demirbas A (2008) Conversion of cornstover to chemicals and fuels. Energy Sources Part A: Recovery Util Environ Eff 30(9):788–796CrossRefGoogle Scholar
  22. 22.
    Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25CrossRefGoogle Scholar
  23. 23.
    Van Dam EG, Klerk-Engles BD (2005) Resource supplies for changing market. Products 21:129–144Google Scholar
  24. 24.
    Diebold JP, Lilley A, Browne K, Walt RR, Duncan D, Walker M, Steele J, Fields M, Smith T (2008) Method and apparatus for automated, modular, biomass power generation. community power corporation, EP1896368, Patent. Accessed 26 June 2009
  25. 25.
    Bridgwater AV, Cottam ML (1992) Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuels 6(2):113–120CrossRefGoogle Scholar
  26. 26.
    Mullen CA, Boateng AA (2008) Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 22(3):2104–2109CrossRefGoogle Scholar
  27. 27.
    Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K (2004) Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenergy 26:455–462CrossRefGoogle Scholar
  28. 28.
    Raouf MA (2010) Development of non-petroleum binders derived from fast pyrolysis bio-oils for use in flexible pavements. Dissertation, Iowa State UniversityGoogle Scholar
  29. 29.
    Rao K (2010) The current state of biopolymers and their potential future. Omnexus by specialchem. Accessed 30 March 2011
  30. 30.
    Rhodes CJ (2008) The oil question nature and prognosis. Sci Prog 91(4):317--375MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lukkassen D, Meidell A (2007) Advanced materials and structures and their fabrication processes. Book manuscript, Narvik University College, HiN, Accessed 10 April 2011
  32. 32.
    Yang L., Dai C., Ma L., Lin S (2010) Conjugation of soybean oil and it’s free-radical copolymerization with acrylonitrile. J Polym Environ 1–7. doi:  10.1007/s10924-010-0259-z
  33. 33.
    Can E, Kusefoglu S, Wool RP (2001) Thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soy oil monoglyceride maleates. J Appl Polym Sci 81:69–77CrossRefGoogle Scholar
  34. 34.
    Cakmakli B, Hazer B, Tekin IO, Kizgut S, Kosal M, Menceloglu Y (2004) Synthesis and characterization of polymeric linseed oilgrafted methyl methacrylate or styrene. Macromol Biosci 4:649–655CrossRefGoogle Scholar
  35. 35.
    Petrovic ZS, Guo A, Zhang W (2000) Structure and properties of polyurethanes based on halogenated and nonhalogenated soypolyols. J Polym Sci A Polym Chem 38:4062–4069CrossRefGoogle Scholar
  36. 36.
    Petrovic ZS, Zhang W, Zlatanic A, Lava CC, Ilavskyy M (2002) Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks. J Polym Environ 10:5–12CrossRefGoogle Scholar
  37. 37.
    Andjelkovic D, Valverde M, Henna PH, Li F, Larock RC (2005) Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure–property relationships. Polymer 46:9674–9685CrossRefGoogle Scholar
  38. 38.
    Hamed GR (1992) Materials and compounds. engineering with rubber: how to design rubber components from Alan N. Gent. Hanser Publishers, GermanyGoogle Scholar
  39. 39.
    Rahman MM (2004) Characterisation of dry process crumb rubber modified asphalt mixtures. Dissertation, University of NottinghamGoogle Scholar
  40. 40.
    Polymer Science Learning Center (2005) The macrogalleria––a cyberwonderland of polymer fun! department of polymer science, the University of Southern Mississippi. Accessed 22 April 2008
  41. 41.
    Kumnuantip C, Sombatsompop N (2003) Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends. Mater Lett 57(21):3167–3174CrossRefGoogle Scholar
  42. 42.
    Kariyo S, Stapf S (2004) NMR relaxation dispersion of vulcanized natural RUBBER. Solid State Nucl Magn Reson 25(1–3):64–71CrossRefGoogle Scholar
  43. 43.
    Putman BJ, Amirkhanian SN (2006) Crumb rubber modification of binders: interaction and particle effects. In: Asphalt rubber 2006 conference, Palm Springs, USA, pp 655–677Google Scholar
  44. 44.
    Gawel I, Stepkowski R, Czechowski F (2006) Molecular interactions between rubber and asphalt. Ind Eng Chem Res 45(9):3044–3049CrossRefGoogle Scholar
  45. 45.
    Green EL, Tolonen WJ (1977) The chemical and physical properties of asphalt-rubber mixtures. FHWA-AZ-HPR14-162, Arizona Department of Transport, Report ADOT-RS-14, 162Google Scholar
  46. 46.
    Jensen W, Abdelrahman M (2006) Crumb rubber in performance-graded asphalt binder. Nebraska Department of Roads, Final Report, SPR-01 (05) P585, University of Nebraska-LincolnGoogle Scholar
  47. 47.
    Khalid HA (2005) Recent research on use of rubber in asphalt. WRAP rubber in roads seminar, University of LiverpoolGoogle Scholar
  48. 48.
    Artamendi I, Khalid HA (2006) Diffusion Kinetics of Bitumen into Waste Tyre Rubber. In: Proceedings of the technical sessions, J Assoc Asphalt Paving Technol 75:133–164 Google Scholar

Copyright information

© Springer-Verlag London Limited  2012

Authors and Affiliations

  • Joana Peralta
    • 1
  • Mohamed Abdel Raouf
    • 1
  • Sheng Tang
    • 1
  • R. Christopher  Williams
    • 1
  1. 1.Civil Engineering, Institute for TransportationIowa State UniversityAmesUSA

Personalised recommendations