Skip to main content

Second-Generation Biofuel Production from Corn-Ethanol Industry Residues

  • Chapter
  • First Online:
Sustainable Bioenergy and Bioproducts

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Net ethanol production per unit mass of corn kernel can be significantly improved by utilizing fibrous co-products to produce cellulosic ethanol. Corn fiber is a good cellulosic feedstock to produce second-generation biofuel. A biorefinery concept is introduced to convert fibrous residue, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. Laboratory-scale consolidated fermentation system comprised of on-site fungal enzyme production system and simultaneous saccharification and fermentation (SSF) yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42% of the theoretical ethanol yield from starch and cellulose in corn fiber. This is equivalent to 120 l of ethanol per metric ton of corn fiber. With process optimization, conversion of over 70% of corn fiber carbohydrate content into ethanol can generate as much as 13x109 l of ethanol per year, which is equivalent to 25% of the current annual ethanol production (52x109 l) in the US, additional $8.65 billion annual revenue and reduction in corn acreage by 3 mha. It is also possible to convert the carbohydrates to a fuel oil using a secondary oleaginous fungal process. The residual fiber enriched with fungal protein can still be utilized as animal feed without unbalancing the feed market/supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas C, Beery K, Dennison E, Corrington P (2004) Thermochemical treatment, separation and conversion of corn fiber to ethanol. In: Saha BC, Hayashi K (eds) Lignocellulose Biodegradation. American Chemical Society, Washington, pp 84–97

    Chapter  Google Scholar 

  2. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  Google Scholar 

  3. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92

    Article  Google Scholar 

  4. Brown DE (1983) Lignocellulose hydrolysis. Philosophical Transactions of the Royal Society of London, Series B. Biol Sci 300(1100):305–322

    Article  Google Scholar 

  5. Chum HL, Douglas LJ, Feinberg DA, Schroeder HA (1985) Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose. Technical Report Solar Energy Research Institute, Golden, CO (USA); Colorado State University, Fort Collins (USA)

    Google Scholar 

  6. Dale BE (1987) Lignocellulose conversion and the future of fermentation biotechnology. Trends Biotechnol 5(10):287–291

    Article  Google Scholar 

  7. Dincer I, Dost S (1997) Energy and GDP. Int J Energy Res 21:153–167

    Article  Google Scholar 

  8. Energy Information Administration (EIA). (2010). International energy outlook 2010. Retrieved April 2, 2011 from http://www.eia.doe.gov/oiaf/ieo/world.html

  9. Fan LT, Young-Hyun L, Gharpuray MM (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv Biochem Eng/Biotechnol 23:157–187 Springer, Berlin

    Google Scholar 

  10. Hall DO, Rosillo-Calle F, Williams RH, Woods J (1992) Biomass for Energy: Supply prospects. Renewable Energy–Sources for Fuels and Electricity. Eds Johansson TB, Kelly H, Reddy AKN, Williams RH. Island Press, Washington D.C., 593–652

    Google Scholar 

  11. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  Google Scholar 

  12. Himmelsbach JN, Isci A, Raman DR, Anex RP (2009) Design and testing of a pilot-scale aqueous ammonia soaking biomass pretreatment system. Appl Eng Agric 25(6):953–959

    Google Scholar 

  13. Isci A, Himmelsbach J, Pometto A, Raman R, Anex R (2008) Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 144(1):69–77

    Article  Google Scholar 

  14. Johansson TB, Kelly H, Reddy AKN, Williams RH (1992. Renewable fuels and electricity for a growing world economy–Defining and achieving the potential. Renewable Energy–Sources for Fuels and Electricity. Eds Johansson TB, Kelly H, Reddy AKN, Williams RH. Island Press, Washington D.C., 1–72

    Google Scholar 

  15. Millett MA, Baker AJ, Satter LD (1976) Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol Bioeng Symp 6:125–153

    Google Scholar 

  16. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Landisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  17. National Renewable Energy Laboratory–NREL (1993) NREL Getting Extra “Corn Squeezins”. Technology Briefs. http://www.nrel.gov/docs/gen/old/5639.pdf

  18. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162

    Google Scholar 

  19. POET (2011) Project Liberty. Retrieved March 23, 2011 from:http://www.poet.com/innovation/cellulosic/projectliberty/index.asp

  20. Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26(10):1219–1222

    Article  Google Scholar 

  21. Rasmussen M, Shrestha P, Khanal SK, Pometto AL III, Van Leeuwen J (2010) Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol 101:3526–3533

    Article  Google Scholar 

  22. Renewable Fuels Association (2011) Retrieved March 23, 2011 from http://www.ethanolrfa.org/industry/statistics/

  23. Rosen MA (2002) Energy efficiency and sustainable development. Int J Glob Energy Issues 17(1–2):23–34

    Google Scholar 

  24. Saha BC, Dien BS, Bothast RJ (1998) Fuel ethanol production from corn fiber current status and technical prospects. Appl Biochem Biotechnol 70–72(1):115–125

    Article  Google Scholar 

  25. Shiu A, Lam PL (2004) Electricity consumption and economic growth in China. Energy Policy 32(1):47–54

    Article  Google Scholar 

  26. Shrestha P, Rasmussen ML, Khanal SK, Pometto AL, Van Leeuwen J (2008) Saccharification of corn fiber by Phanerochaete chrysosporium in solid-substrate fermentation and subsequent fermentation of hydrolyzate into ethanol. J Agric Food Chem 56:3918–3924

    Article  Google Scholar 

  27. Shrestha P (2008) Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol. Doctoral Thesis. Iowa State University, Ames

    Google Scholar 

  28. Shrestha P, Khanal SK, Pometto AL, Van Leeuwen J (2009) Enzyme production by wood-rot and soft-rot fungi cultivated on corn fiber followed by hydrolyzate fermentation to ethanol. J Agric Food Chem 57:4156–4161

    Article  Google Scholar 

  29. Shrestha P, Khanal SK, Pometto AL, Van Leeuwen J (2010) Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour Technol 101(22):8698–8705

    Article  Google Scholar 

  30. Singh A, Kumar PKR, Schugerl K (1992) Bioconversion of cellulosic materials to ethanol by filamentous fungi. Adv Biochem Eng /Biotechnol 45:29–55

    Article  Google Scholar 

  31. Singh V, Moreau RA, Doner LW, Eckhoff SR, Hicks KB (1999) Recovery of fiber in the corn dry-grind ethanol process: a feedstock for valuable coproducts. Cereal Chem 76(6):868–872

    Article  Google Scholar 

  32. So KS, Brown RC (1999) Economic analysis of selected lignocellulose to ethanol conversion technologies. Appl Biochem Biotechnol 79(1–3):633–640

    Article  Google Scholar 

  33. South CR, Hogsett DA, Lynd LR (1993) Continuous fermentation of cellulosic biomass to ethanol. Appl Biochem Biotechnol 39–40(1):587–600

    Article  Google Scholar 

  34. United Nations Development Programme (UNDP). (2000). World energy assessment. New York

    Google Scholar 

  35. United States Department of Agriculture (USDA) and United States Department of Energy (USDOE) (2005) A billion-ton feedstock supply for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply

    Google Scholar 

  36. United States Department of Agriculture (USDA). 2009. USDA AMS Ethanol and CoProducts Reports. http://www.ers.usda.gov/Briefing/Baseline/present2009.htm#cropsbox1

  37. United States Energy Information Administration (USEIA) (2011) Annual Energy Outlook. AEO2011 Early Release Overview. Retrieved April 2, 2011 from: http://www.eia.gov/forecasts/aeo/pdf/0383er(2011).pdf

  38. Uwituze S, Parsons GL, Schneider CJ, Karges KK, Gibson ML, Hollis LC, Higgins JJ, Drouillard JS (2011) Evaluation of sulfur content of dried distillers grains with solubles in finishing diets based on steam-flaked corn or dry-rolled corn. J Anim Sci, March 2011. Electronic version ahead of printing

    Google Scholar 

  39. Van Leeuwen J, (Hans) Kim TH, Grewell D, Mitra D, Beattie S, Ziel C, Chand P, Reddy Chintareddy V, Montalbo-Lomboy M, Verkade J (2009) An Integrated Fungal Biodiesel Production Process: Mycofuel, winning entry for the R&D 100 awards

    Google Scholar 

  40. Wiegel J (1982) Ethanol from cellulose. Cell Mol Life Sci 38(2):151–156

    Article  Google Scholar 

  41. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachand Shrestha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shrestha, P., Pometto, A.L., Khanal, S.K., van Leeuwen, J.(. (2012). Second-Generation Biofuel Production from Corn-Ethanol Industry Residues. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics