DScentTrail: A New Way of Viewing Deception

  • S.J. Dixon
  • M.B. Dixon
  • J. Elliott
  • E. Guest
  • D. J. Mullier
Conference paper


The DScentTrail System has been created to support and demonstrate research theories in the joint disciplines of computational inference, forensic psychology and expert decision-making in the area of counter-terrorism. DScentTrail is a decision support system, incorporating artificial intelligence, and is intended to be used by investigators. The investigator is presented with a visual representation of a suspect‟s behaviour over time, allowing them to present multiple challenges from which they may prove the suspect guilty outright or receive cognitive or emotional clues of deception. There are links into a neural network, which attempts to identify deceptive behaviour of individuals; the results are fed back into DScentTrail hence giving further enrichment to the information available to the investigator.


Unify Modelling Language Board Game Regression Neural Network Forensic Psychology Deceptive Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The DScent project was funded by the EPSRC, grant number: EP/F014112/1 Project partners included Lancaster University, University of Nottingham, University of St. Andrews and University of Leicester.


  1. 1.
    Dixon, S., Dixon, M., Elliott, J., Guest, E., Mullier, D.: DScent Final Report (2011). Available via: Accessed 8 March 2011.
  2. 2.
    Markman, A., Rachkovskij, D., Misuno, I., Revunova, E.: Analogical Reasoning Techniques in Intelligent Counterterrorism APNN. International Journal ITA Vol. 10, (2) (2003). Available via: Accessed 27 November 2010.
  3. 3.
    Marappan, K., Nallaperumal, K., Kannan, S., Bensujin, B.: A Soft Computing Model to Counter Terrorism. International Journal of Computer Science and Network Security Vol. 8, May 2008, pp.141, (2008).Google Scholar
  4. 4.
    Schneier, B.: Why Data Mining Won’t Stop Terror. Wired (2006). Available via: Accessed 23 August 2011.
  5. 5.
    Rudmin, F.: Why Does the NSA Engage in Mass Surveillance of Americans When It’s Statistically Impossible for Such Spying to Detect Terrorists? Counterpunch (2006). Available via: Accessed 30 October 2010.
  6. 6.
    Joyce, J.: Bayes’ Theorem. In: The Stanford Encyclopedia of Philosophy, Fall 2008 Edition. Edward (2008). Available via: Accessed 09 June 2011.
  7. 7.
    Ware, B.S., Beverina, A., Gong, L., Colder, B.: A Risk-Based Decision Support System for Antiterrorism (2002). Available via: Accessed 30 January 2009.
  8. 8.
    Ekman, P.: Telling lies: Clues to deceit in the marketplace, marriage, and politics. New York, Norton (2001).Google Scholar
  9. 9.
    Ambler, S.W.: Introduction to Object-Orientation and the UML (2009). Available via: Accessed 26 January 2011.
  10. 10.
    Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User Guide. Object Technology Series. 2nd Ed., Addison Wesley (2005).Google Scholar
  11. 11.
    Dixon, M.: QSEE Superlite home. QSEE Technologies (2004). Available via: Accessed 26 October 2010.
  12. 12.
    Flanagan, D.: Java In a Nutshell, 4th Ed., O’Reilly Media (2002).Google Scholar
  13. 13.
    The Eclipse Foundation: home (2004). Available via: Accessed 14 October 2010.
  14. 14.
    Oracle Corporation: Oracle Spatial and Oracle Locator (2010). Available via: Accessed 26 October 2010.
  15. 15.
    Reece, G.: Database Programming with JDBC and Java, 2nd Ed., Sebastopol, CA, USA, O’Reilly & Associates, Inc. (2000).Google Scholar
  16. 16.
    Ripley, B.D.: Pattern Recognition and Neural Networks. New York, Cambridge University Press (2008).MATHGoogle Scholar
  17. 17.
    Heaton, J.: Programming Neural Networks with Encog2 in Java. Heaton Research (2010).Google Scholar
  18. 18.
    Elman, J.L.: Distributed representations, simple recurrent networks, and graammatical structure. Machine Learning Vol. 7, no. 2-3 pp.195-224, doi: 10.1007/BF00114844 (1991).Google Scholar
  19. 19.
    Guest, E., Bolotov, A., Dixon, S., Sandham, A.: Realistic Deceptive Data Generation for Counter Terrorism (2011). EPSRC Standard Proposal. Wiltshire, UK. Ref: M1504908 July 2011.Google Scholar
  20. 20.
    Evertsz, R., Pedrotti, M., Busetta, P., Acar, H.: Populating VBS2 with Realistic Virtual Actors. Proceedings of the 18th Conference on Behavior Representation in Modeling and Simulation pp.1–8, (2009).Google Scholar
  21. 21.
    Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Studies in Computational Intelligence), 2nd Ed., Springer (2006).Google Scholar
  22. 22.
    Petersen, U.: Emdros: a text database engine for analyzed or annotated text. Proceedings of the 20th international conference on Computational Linguistics (2004). Available via: Accessed 24 January 2011.
  23. 23.
    Haugeland, J.: Artificial Intelligence: The Very Idea. Cambridge, MA, MIT Press (1985).Google Scholar
  24. 24.
    Noldus Information Technology: Theme. Noldus Information Technology (2004). Available via: Accessed 27 October 2010.

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • S.J. Dixon
    • 1
  • M.B. Dixon
    • 1
  • J. Elliott
    • 1
  • E. Guest
    • 1
  • D. J. Mullier
    • 1
  1. 1.Leeds Metropolitan UniversityLeedsUK

Personalised recommendations