Skip to main content

Abstract

This chapter is dedicated to radio channel modeling for 4G networks. In addition to recent results in the area of 4G channel modeling at large, including complex environments such as aircrafts, COST 2100 has dealt with a number of specific topics which are presented in this chapter.

  • Improved deterministic methods, including models of diffuse components are detailed in Sect. 3.2. The developed models namely propose new methods to account for macroscopic diffuse scattering in ray-tracing tools.

  • The measurement-based modeling of the same diffuse or dense multipath components has represented one major research topic in COST 2100, especially regarding the extraction of such components from experimental data (Sect. 3.3).

  • Another important topic of research has concerned the modeling of the polarization behavior of wireless channels (see Sect. 3.4), as multipolarized antenna arrays appear more and more as a realistic implementation of MIMO systems.

  • The specific representation and modeling of multilink scenarios is dealt with in Sect. 3.5. Considering the correlations between multiple links is a significant requirement to design robust schemes in cooperative, relay or multihop networks.

  • Finally, the COST 2100 model is presented in Sect. 3.6. Starting from a single-link implementation based on the COST 273 model (available online), it builds upon the work described in this chapter to propose an updated version of the COST 2100 model including enhancements such as diffuse and cross-polar components, as well as multi-link aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of dominant propagation mechanisms is often applied in channel characterization, see, e.g., [KHH+10, PHS+09, ETM07].

  2. 2.

    The WINNER II channel model provides pathloss model for variety of environments. They are summarized in Table 4 of [KMH+07].

  3. 3.

    The WINNER channel model [KMH+07] provides similar parameters but they describe cross-correlation of global spreads and hence are different from parameters here. The same goes to the autocorrelation distances.

  4. 4.

    For [PHL+10b], parameters from BS1 are shown in the list, and parameters from LOS routes 1 and NLOS route 4 are shown from [ZTW+10].

References

  1. 3GPP TR25.996 V9.0.0. Spatial channel model for MIMO simulations. Technical Report, Third Generation Partnership Project (3GPP), December 2009.

    Google Scholar 

  2. H. Asplund, K. Larsson, and P. Okvist. How typical is the “Typical Urban” channel model? Technical Report TD07356, Duisburg, Germany, September 2007.

    Google Scholar 

  3. M. Barbiroli, C. Carciofi, V. Degli-Esposti, F. Fuschini, P. Grazioso, D. Guiducci, D. Robalo, and F. J. Velez. Characterization of WiMAX propagation in microcellular and picocellular environments. In Proc. 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(10)11007].

    Google Scholar 

  4. M. Barbiroli, C. Carciofi, D. Guiducci, D. Robalo, F. J. Velez, P. Sebastiano, F. Varela, and F. Cercas. Analysis of WiMAX propagation measurements in outdoor and indoor environments. Technical Report TD(09)957, Vienna, Austria, February 2009.

    Google Scholar 

  5. R. I. C. Bultitude, G. S. Dahman, R. H. M. Hafez, and H. Zhu. Double directional radio propagation measurements and radio channel modelling pertinent to mobile MIMO communications in microcells. Technical Report TD(10)11019. Aalborg, Denmark, June 2010.

    Google Scholar 

  6. J. W. De Bleser, E. Van Lil, and A. Van de Capelle. Applying ray tracing to finite multilayered structures. Technical Report TD(08)628, Lille, France, October 2008.

    Google Scholar 

  7. J. W. De Bleser, E. Van Lil, and A. Van de Capelle. An analysis of the low-frequency limit of the boundary integral equations. Technical Report TD(09)846, Valencia, Spain, May 2009.

    Google Scholar 

  8. R. S. Blum. MIMO capacity with interference. IEEE J. Select. Areas Commun., 21(5):793–801, 2003. doi:10.1109/JSAC.2003.810345.

    Article  Google Scholar 

  9. R. Bultitude. Methods for estimating and modelling consistency intervals and the detection and simulation of changes on mobile radio channels. Technical Report TD(08)424, Wroclaw, Poland, September 2008.

    Google Scholar 

  10. N. Czink, B. Bandemer, C. Oestges, and A. Paulraj. An analytic multi-user MIMO channel model including subspace alignment. Technical Report TD-10-11028, Aalborg, Denmark, June 2010.

    Google Scholar 

  11. N. Czink, B. Bandemer, G. Vazquez-Vilar, L. Jalloul, C. Oestges, and A. Paulraj. Spatial separation of multi-user MIMO channels. In Proc. IEEE Pers Indoor Mobile Radio Comm. Conf. (PIMRC), 2009.

    Google Scholar 

  12. N. Czink, E. Bonek, J. Ylitalo, and T. Zemen. Measurement-based time-variant channel modelling using clusters. Technical Report TD(08)435, Wroclaw, Poland, September 2008.

    Google Scholar 

  13. Q. H. Chu, J. M. Conrat, and J. C. Cousin. Path loss characterization for LTE-advanced relaying propagation channel. Technical Report TD(10)12019, Bologna, Italy, November 2010.

    Google Scholar 

  14. J.-M. Conrat, H. Dekov, A. Nasr, and M. Lienard. Analysis of the space–time channel behavior in outdoor-to-indoor environment, February 2009. [Also available as TD(08)627].

    Google Scholar 

  15. N. Czink, F. Kaltenberger, Y. Zhouz, L. Bernado, T. Zemen, and X. Yin. Low-complexity geometry-based modeling of diffuse scattering. In 10th COST 2100 MCM Meeting, Athens, Greece, February 2010. COST 2100 TD(10)10026.

    Google Scholar 

  16. Y. Corre and Y. Lostanlen. Methods to extrapolate 3D antenna radiation pattern ensuring reliable radio channel predictions. Technical Report TD(08)426, Wroclaw, Poland, February 2008.

    Google Scholar 

  17. N. Czink and C. Oestges. The COST 273 MIMO channel model—a short tutorial. Technical Report TD(08)405, Wroclaw, Poland, February 2008.

    Google Scholar 

  18. N. Czink and C. Oestges. The COST 273 MIMO channel model: three kinds of clusters. In Proc. IEEE 10th Int. Sym. ISSSTA ’08, pages 282–286, Bologna, Italy, August 2008.

    Google Scholar 

  19. L. Correia. Wireless Flexible Personalized Communications. Wiley, New York, 2001.

    Google Scholar 

  20. L. M. Correia. Mobile Broadband Multimedia Networks. Academic Press, San Diego, 2006.

    Google Scholar 

  21. J.-M. Conrat and P. Pajusco. Clusterization of the propagation channel in urban macrocells at 2 GHz. In The European Conference on Wireless Technology, 2005, pages 39–42, 2005. [Also available as TD(07)307].

    Google Scholar 

  22. K. L. Chee, S. A. Torrico, and T. Kürner. Foliage attenuation over mixed terrains in rural areas for broadband wireless access at 3.5 GHz. Technical Report TD(10)12027, Bologna, Italy, November 2010.

    Google Scholar 

  23. N. Czink. The random-cluster model: a stochastic MIMO channel model for broadband wireless communication systems of the 3rd generation and beyond. PhD thesis, Vienna University of Technology, Vienna, Austria, 2007.

    Google Scholar 

  24. A. Dunand and J.-M. Conrat. Dual-polarized spatio-temporal characterization in urban macrocells at 2 GHz. In Proc. VTC 2007 Fall—IEEE 66th Vehicular Technology Conf., Baltimore, MD, USA, 2007. [Also available as TD(08)406].

    Google Scholar 

  25. A. Dunand and J.-M. Conrat. Polarization behaviour in urban macrocell environments at 2.2 GHz. In Proc. European Conference on Antennas and Propagation (EuCap 2007), Edinburgh, UK, 2007. [Also available as TD(08)406].

    Google Scholar 

  26. D. Didascalou, M. Doettling, N. Geng, and W. Wiesbeck. An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling. IEEE Trans. Antennas Propagat., 51(7):27–37, 2003. [Also available as TD(01)007].

    Article  Google Scholar 

  27. E. Damosso and L. M. Correia (ed.). Digital Mobile Radio Towards Future Generation Systems. European Commission, Brussels, 1999.

    Google Scholar 

  28. V. Degli-Esposti. A diffuse scattering model for urban propagation prediction. IEEE Trans. Antennas Propagat., 49(7):1111–1113, 2001.

    Article  Google Scholar 

  29. V. Degli-Esposti, F. Fuschini, and E. M. Vitucci. A fast model for distributed scattering from buildings. Technical Report TD(08)668, Lille, France, October 2008.

    Google Scholar 

  30. V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca. Measurement and modelling of scattering from buildings. IEEE Trans. Antennas Propagat., 55(1):143–153, 2007.

    Article  Google Scholar 

  31. V. Degli-Esposti, D. Guiducci, A. De Marsi, P. Azzi, and F. Fuschini. An advanced field prediction model including diffuse scattering. IEEE Trans. Antennas Propagat., 14:1717–1728, 2004.

    Article  Google Scholar 

  32. G. de la Roche, P. Flipo, Z. Lai, G. Villemaud, J. Zhang, and J.-M. Gorce. Combined model for outdoor to indoor radio propagation prediction. Technical Report TD(10)10045, Athens, Greece, February 2010.

    Google Scholar 

  33. G. de la Roche, K. Jaffres-Runser, and J.-M. Gorce. On predicting in-building WiFi coverage with a fast discrete approach. International Journal of Mobile Network Design and Innovation, 2:3–12, 2007.

    Article  Google Scholar 

  34. R. Delahaye, Y. Pousset, A.-M. Poussard, P. Combeau, and R. Vauzelle. From a deterministic transmission channel modelling to an efficiency simulation of radio links quality of ad hoc networks. Technical Report TD-07-357, Duisburg, Germany, September 2007.

    Google Scholar 

  35. G. Eriksson, F. Tufvesson, and A. F. Molisch. Characteristics of MIMO peer-to-peer propagation channels at 300 MHz. Technical Report TD-07-376, Duisburg, Germany, September 2007.

    Google Scholar 

  36. R. Fraile, J. F. Monserrat, and N. Cardona. Analysis and validation of a shadowing simulation model suited for dynamic and heterogeneous wireless networks. Technical Report TD-08-542, Trondheim, Norway, June 2008.

    Google Scholar 

  37. K. Fors, K. Wiklundh, and G. Eriksson. A stochastic channel model for simulation of mobile ad hoc networks. Technical Report TD-10-11084, Aalborg, Denmark, June 2010.

    Google Scholar 

  38. M. Gan, N. Czink, P. Castiglione, C. Oestges, F. Tufvesson, and T. Zemen. Modeling time-variant fast fading statistics of mobile peer-to-peer radio channels. Technical Report TD-10-12003, Bologna, Italy, November 2010.

    Google Scholar 

  39. T. T. Georgiou. Distances between power spectral densities. arXiv:math/0607026v2. International Telecommunication Union, Radiocommunication Sector (ITU-R), July 2006.

  40. J. M. Gorce, K. Jaffres-Runser, and G. De La Roche. Deterministic approach for fast simulations of indoor radio wave propagation. IEEE Trans. Antennas Propagat., 55(3):938–948, 2007.

    Article  Google Scholar 

  41. A. P. Garcia, L. Rubio, and N. Cardona. Frequency impact on the MIMO capacity between 2 and 12 GHz in an office environment. Technical Report TD(07)216, Lisbon, Portugal, February 2007.

    Google Scholar 

  42. M. Ghoraishi and J. Takada. Azimuth-power-spectrum prediction by site-specific stochastic channel modeling in a microcell line-of-sight scenario. Technical Report TD(07)389, Duisburg, Germany, September 2007.

    Google Scholar 

  43. M. Ghoraishi and J. Takada. Stochastic channel model for dense urban line-of-sight street microcell. Technical Report TD(07)241, Lisbon, Portugal, February 2007.

    Google Scholar 

  44. M. Gudmundson. Correlation model for shadow fading in mobile radio systems. Electronics Letters, 27(23):2145–2146, 1991. doi:10.1049/el:19911328.

    Article  Google Scholar 

  45. G. Golub and C. van Loan. Matrix Computations, 3rd edition. Johns Hopkins University Press, London, 1996.

    MATH  Google Scholar 

  46. M. Herdin, N. Czink, H. Ozcelik, and E. Bonek. Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels. In IEEE VTC Spring 2005, vol. 1, pages 136–140, 2005.

    Google Scholar 

  47. K. Haneda, J. Poutanen, L. Liu, C. Oestges, F. Tufvesson, and P. Vainkainen. Comparison of delay and angular spreads between channel measurements and the COST 2100 channel model. In Proc. Loughborough Ant. Prop. Conf. (LAPC2010), Loughborough, UK, November 2010. [Also available as TD(10)11072].

    Google Scholar 

  48. T. Hult, F. Tufvesson, V.-M. Kolmonen, J. Poutanen, and K. Haneda. Analytical dual-link MIMO channel model using correlated correlation matrices. In Proc. European Conf. on Antennas and Propagation (EUCAP 2010).

    Google Scholar 

  49. T. Holt, F. Tufvesson, V.-M. Kolmonen, J. Poutanen, and K. Haneda. Canalytical multi-link MIMO channel model using rotated correlation matrices. Technical Report TD-10-12061, Bologna, Italy, November 2010.

    Google Scholar 

  50. R. Hoppe, G. Woelfle, and P. Wertz. Advanced ray-optical wave propagation modelling for urban and indoor scenarios. European Transactions on Telecommunications (ETT), 14:61–69, 2003.

    Google Scholar 

  51. ITU-R M.2135. Guidelines for evaluation of radio interface technologies for IMT-advanced. Technical Report, International Telecommunication Union, Radiocommunication Sector (ITU-R), 2008.

    Google Scholar 

  52. N. Jalden. Analysis and modelling of joint channel properties from multisite, multi-antenna radio measurements. PhD thesis, KTH, Stockholm, February 2010.

    Google Scholar 

  53. T. Jämsä, P. Kyösti, and J. Meinilä. Approximation of WINNER channel models. Technical Report TD(08)505, Trondheim, Norway, June 2008.

    Google Scholar 

  54. W. Jiang, L. Liu, M. Zhu, and F. Tufvesson. Implementation of the COST 2100 multi-link MIMO channel model in C++/IT++. Technical Report TD(10)12092, Bologna, Italy, November 2010.

    Google Scholar 

  55. F. Kaltenberger, L. Bernadó, and T. Zemen. On the characterization of measured multi-user MIMO channels. In Workshop on Smart Antennas (WSA 2009), Berlin, Germany, February 2009. [Also available as TD-08-640].

    Google Scholar 

  56. T. Kürner, R. Fauss, and A. Wäsch. A hybrid propagation modelling approach for DCS1800 macro cells. In Proc. VTC 1996—IEEE 46th Vehicular Technology Conf., Atlanta, Georgia, USA, May 1996.

    Google Scholar 

  57. M. Kwakkernaat and M. Herben. Analysis of clustered multipath estimates in physically nonstationary radio channels. Technical Report TD(07)324, Duisburg, Germany, September 2007.

    Google Scholar 

  58. M. Kwakkernaat and M. Herben. Modelling angular dispersion in ray-based propagation prediction models. Technical Report TD(08)519, Trondheim, Norway, June 2008.

    Google Scholar 

  59. M. Kwakkernaat and M. Herben. Modelling of angular dispersion due to rough surface scattering for implementation in ray-tracing-based propagation prediction tools. Technical Report TD(09)713, Braunschweig, Germany, February 2009.

    Google Scholar 

  60. V.-M. Kolmonen, K. Haneda, T. Hult, J. Poutanen, F. Tufvesson, and P. Vainikainen. Measurement-based evaluation of interlink correlation for indoor multi-user MIMO channels. IEEE Antennas Wireless Propagat. Lett., 9(4):311–314, 2010.

    Article  Google Scholar 

  61. K. Kitao, T. Imai, K. Saito, Y. Okano, and S. Miura. Estimation accuracy of ray-tracing for spatio-temporal dynamic channel properties. Technical Report TD(10)11046, Aalborg, Denmark, June 2008.

    Google Scholar 

  62. P. Kyosti and T. Jamsa. Complexity comparison of MIMO channel modelling methods. In Proc. 4th Int. Symp. Wireless Communication Systems ISWCS 2007, pages 219–223, 2007.

    Chapter  Google Scholar 

  63. P. Kyösti, T. Jämsä, A. Byman, and M. Narandžić. Computational complexity of drop based radio channel simulation. Technical Report TD-08-533, Trondheim, Norway, June 2008.

    Google Scholar 

  64. M. Käske, M. Landmann, and R. Thomä. Modelling and Synthesis of Dense Multipath Propagation Components in the Angular Domain. In 7th COST 2100 MCM Meeting, Braunschweig, Germany, February 2009. [COST 2100 TD(09)762].

    Google Scholar 

  65. P. Kyösti, J. Meinilä, L. Hentilä, X. Zhao, T. Jämsä, C. Schneider, M. Narandžić, M. Milojević, A. Hong, J. Ylitalo, V.-M. Holappa, M. Alatossava, R. Bultitude, Y. de Jong, and T. Rautiainen. IST-4-027756 WINNER II Deliverable 1.1.2. v.1.2, WINNER II Channel Models. Technical Report, IST-WINNERII, September 2007.

    Google Scholar 

  66. Y. Konishi, L. Materum, J. Takada, I. Ida, and Y. Oishi. Polarization characteristics of MIMO system: measurement, modeling and statistical validation. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Tokyo, Japan, September 2009. [Also available as TD(09)737].

    Google Scholar 

  67. W. Kotterman and R. Thomä. Testing for Kronecker-separability. Technical Report TD(07)217, Lisbon, Portugal, February 2007.

    Google Scholar 

  68. M. Kwakkernaat. Angular dispersion of radio waves in mobile channels: measurement based analysis and modelling. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, December 2008.

    Google Scholar 

  69. F. Kaltenberger, T. Zemen, and C. W. Uberhuber. Low-complexity geometry-based MIMO channel simulation. EURASIP Journal in Advances in Signal Processing, 2007, 2007. Article ID 95281. doi:10.1155/2007/95281.

  70. L. Liu, N. Czink, and C. Oestges. Implementing the COST 273 MIMO channel model. In Proc. NEWCOM++—ACoRN Joint Workshop, Barcelona, Spain, March 2009.

    Google Scholar 

  71. M. Lienard, P. Degauque, and J. M. Molina-Garcia-Pardo. Wideband large and small scale fading in tunnels. Technical Report TD(08)608, Lille, France, October 2008.

    Google Scholar 

  72. L. Liu, C. Oestges, and N. Czink. The COST 273 channel model implementation. Technical Report TD(08)638, Lille, France, October 2008.

    Google Scholar 

  73. Y. Lustmann and Porrat. Indoor channel spectral statistics, K-factor and reverberation distance example. Technical Report TD(09)959, Vienna, Austria, February 2009.

    Google Scholar 

  74. E. Van Lil, J.w. De Bleser, D. Trappeniers, and A. Van de Capelle. On the effects of large (moving) objects like wind turbines on the accuracy and reliability of radio frequency sensors. Technical Report, Delft, The Netherlands, June 2009. [Also available in extended form as TD(08)443].

    Google Scholar 

  75. A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick. The COST 259 directional channel model—part i: overview and methodology. IEEE Trans. Wireless Commun., 5(12):3421–3433, 2006.

    Article  Google Scholar 

  76. O. Mantel. Effect of database simplification on ray-tracing predictions for a dense urban GSM cell. Technical Report TD(07)323, Duisburg, Germany, September 2007.

    Google Scholar 

  77. O. Mantel, A. Bokiye, R. van Dommele, and M. Kwakkernaat. Measurement-based verification of delay and angular spread ray-tracing predictions for use in urban mobile network planning. Technical Report TD(09)914, Vienna, Austria, May 2009.

    Google Scholar 

  78. R. Moghrani, J. M. Conrat, X. Begaud, and B. Huyart. Performance evaluation of a 3D ray tracing model in urban environment. In Antennas and Propagation Society International Symposium (IEEE APSURSI 2010), pages 1–4, Toronto, Ontario, July 2010. [Also available as TD(10)10064].

    Chapter  Google Scholar 

  79. J.-M. Molina-Garcia-Pardo, M. Liénard, P. Degauque, C. Garcia-Pardo, and L. Juan-Llácer. MIMO channel capacity with polarization diversity in arched tunnels. IEEE Antennas Wireless Propagat. Lett., 8:1186–1189, 2009. [Also available as TD(09)802].

    Article  Google Scholar 

  80. J.-M. Molina-Garcia-Pardo, J.-V. Rodriguez, and L. Juan-Llácer. Polarized indoor MIMO channel measurements at 2.45 GHz. IEEE Trans. Antennas Propagat., 56(12):3818–3828, 2008. [Also available as TD(08)605].

    Article  Google Scholar 

  81. P. Mogensen and K. Klingenbrunn. Modelling cross-correlated shadowing in network simulations. In Proc. VTC 1999 Fall—IEEE 50th Vehicular Technology Conf., pages 1407–1411, Amsterdam, The Netherlands, September 1999.

    Google Scholar 

  82. M. Neuland and T. Kuerner. Analysis of the influence of different resolutions on radio propagation models at 900 and 1800 MHz. In Proc. 2nd European Conference on Antennas and Propagation (EuCAP 2007), 2007. [Also available as TD(07)366].

    Google Scholar 

  83. F. Mani and C. Oestges. Evaluation of diffuse scattering contribution for delay spread and crosspolarization ratio prediction in an indoor scenario. In Proc. 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(09)812].

    Google Scholar 

  84. F. Mani and C. Oestges. Ray-tracing evaluation of diffuse scattering in an outdoor scenario. In Proc. 5th European Conference on Antennas and Propagation (EuCAP 2011), Roma, Italy, April 2011. [Also available as TD(10)12018].

    Google Scholar 

  85. N. Moraitis, A. Panagopoulos, and P. Constantinou. Attenuation measurements and interference study for in-cabin wireless networks. Technical Report TD(10)10096, Athens, Greece, February 2010.

    Google Scholar 

  86. F. Mani, F. Quitin, and C. Oestges. Evaluation of diffuse scattering contribution in office scenario. Technical Report TD(10)10001, Athens, Greece, May 2010.

    Google Scholar 

  87. M. Narandžić, W. Kotterman, M. Käske, C. Schneider, G. Sommerkorn, A. Hong, and R. S. Thomä. On a characterization of large-scale parameters for distributed (multi-link) MIMO—the impact of power level differences. In Proc. of European Conference on Antennas and Propagation (EuCAP 2010).

    Google Scholar 

  88. M. Narandžić, C. Schneider, and R. Thomä. WINNER wideband MIMO system-level channel mode: comparison with other reference models. Technical Report TD(08)457, Wroclaw, Poland, February 2008.

    Google Scholar 

  89. C. Oestges and B. Clerckx. MIMO Wireless Communications. Academic Press, San Diego, 2007.

    Google Scholar 

  90. C. Oestges, N. Czink, B. Bandemer, P. Castiglione, F. Kaltenberger, and A. Paulraj. Experimental characterization and modeling of outdoor-to-indoor and indoor-to-indoor distributed channels. IEEE Trans. Veh. Technol., 59(5), 2253–2265, 2010

    Article  Google Scholar 

  91. C. Oestges, N. Czink, B. Bandemer, P. Castiglione, F. Kaltenberger, and A. I. Paulraj. Experimental characterization and modeling of outdoor-to-indoor and indoor-to-indoor distributed channels. IEEE Trans. Veh. Technol., 59(5):2253–2265, 2010. [Also available as TD-09-722].

    Article  Google Scholar 

  92. C. Oestges, P. Castiglione, and N. Czink. Empirical modeling of nomadic peer-to-peer networks in office environment. Technical Report TD-10-12002, Bologna, Italy, November 2010.

    Google Scholar 

  93. J. D. Parsons. The Mobile Radio Propagation Channel, 2nd edition. Wiley, London, UK, 2001.

    Google Scholar 

  94. C. Prettie, D. Cheung, L. Rusch, and M. Ho. Spatial correlation of UWB signals in a home environment. In Conference on Ultra Wideband Systems and Technologies, pages 65–69, May 2002.

    Google Scholar 

  95. J. Poutanen, K. Haneda, V.-M. Kolmonen, J. Salmi, and P. Vainikainen. Analysis of correlated shadow fading in dual-link indoor radio wave propagation. Technical Report TD-09-910, Wien, Austria, September 2009.

    Google Scholar 

  96. D. Porrat, A. Hayar, E. Kaminsky, and M. Uziel. Spatial dynamics in indoor channels. Technical Report TD-09-827, Valencia, Spain, May 2009.

    Google Scholar 

  97. J. Poutanen, K. Haneda, L. Liu, C. Oestges, F. Tufvesson, and P. Vainikainen. Inputs for the COST 2100 multi-link channel model. Technical Report TD(10)10067, Athens, Greece, February 2010.

    Google Scholar 

  98. J. Poutanen, K. Haneda, L. Liu, C. Oestges, F. Tufvesson, and P. Vainikainen. Parameterization of the COST 2100 MIMO channel model in indoor scenarios. Technical Report TD(10)10066, Athens, Greece, February 2010.

    Google Scholar 

  99. J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, F. Tufvesson, and P. Vainikainen. Analysis of radio wave scattering processes for indoor MIMO channel models. Technical Report TD-09-839, Valencia, Spain, May 2009.

    Google Scholar 

  100. J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, T. Hult, F. Tufvesson, and P. Vainikainen. Significance of common scatterers in multi-link radio wave propagation. In Proc. 4th European Conf. on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(10)10069].

    Google Scholar 

  101. S. Priebe, M. Jacob, C. Jansen, and T. Kürner. Non-specular scattering modeling for THz propagation simulations. In 5th European Conference on Antennas and Propagation (EuCAP 2011).

    Google Scholar 

  102. S. Priebe, M. Jacob, and T. Kürner. Polarization investigation of rough surface scattering for THz propagation modeling. In 5th European Conference on Antennas and Propagation (EuCAP 2011).

    Google Scholar 

  103. A. Panahandeh, F. Quitin, J.-M. Dricot, F. Horlin, C. Oestges, and P. De Doncker. Multi-polarized channel statistics for outdoor-to-indoor and indoor-to-indoor channels. In Proc. VTC 2010 Spring—IEEE 71st Vehicular Technology Conf., Taipei, Taiwan, May 2010. [Also available as TD(09)815].

    Google Scholar 

  104. J. Poutanen, J. Salmi, K. Haneda, V.-M. Kolmonen, and P. Vainikainen. Angular and shadowing characteristics of dense multipath components in indoor radio channels. IEEE Trans. Antennas Propagat., 59(1):245–253, 2011. doi:10.1109/TAP.2010.2090474. [Also available as TD(09)911].

    Article  Google Scholar 

  105. J. Poutanen, F. Tufvesson, K. Haneda, V.-M. Kolmonen, and P. Vainikainen. Multi-link MIMO channel modeling using geometry-based approach. Technical Report.

    Google Scholar 

  106. J. Poutanen, F. Tufvesson, K. Haneda, L. Liu, C. Oestges, and P. Vainikainen. Adding dense multipath components to the COST 2100 MIMO channel model. In Proc. Int. Symp. Antennas and Propagation (ISAP 2010), Macao, China, November 2010. [Also available as TD(10)11033].

    Google Scholar 

  107. J. Poutanen, F. Tufvesson, K. Haneda, L. Liu, C. Oestges, and P. Vainikainen. Adding dense multipath components to the COST 2100 MIMO channel model. In 11th COST 2100 MCM Meeting, Aalborg, Denmark, June 2010. COST 2100 TD(10)11033.

    Google Scholar 

  108. J. Poutanen, F. Tufvesson, K. Haneda, V.-M. Kolmonen, and P. Vainikainen. Multi-link MIMO channel modeling using geometry-based approach. IEEE Trans. Ant. Prop., 2011. doi:10.1109/TAP.2011.2122296 [Also available as TD(10)11034].

  109. F. Quitin, F. Bellens, S. Van Roy, C. Oestges, F. Horlin, and P. De Doncker. Extracting specular-diffuse clusters from MIMO channel measurements. In 12th COST 2100 MCM Meeting, Bologna, Italy, November 2010. COST 2100 TD(10)12065.

    Google Scholar 

  110. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz. IEEE Trans. Veh. Technol., 59(8):3685–3693, 2010.

    Article  Google Scholar 

  111. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Small-scale variations of cross polar discrimination in Ricean fading channels. Elect. Lett., 45(4):213–214, 2009. [Also available as TD(08)603].

    Article  Google Scholar 

  112. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Clustered channel characterization for indoor polarized MIMO systems. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Tokyo, Japan, September 2009. [Also available as TD(09)818].

    Google Scholar 

  113. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Polarimetric measurements for spatial wideband MIMO channels. In Proc. VTC 2009 Spring—IEEE 69th Vehicular Technology Conf., Barcelona, Spain, April 2009.

    Google Scholar 

  114. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Polarization measurements and modeling in indoor NLOS environments. IEEE Trans. Wireless Commun., 9(1):21–25, 2010. [Also available as TD(08)602].

    Article  Google Scholar 

  115. F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. A spatio-temporal channel model for modeling the diffuse multipath component in indoor environments. In Proc. 4th European Conference on Antennas and Propagation 2010 (EuCAP 2010), Barcelona, Spain, April 2010. p1847194. [Also available as COST 2100 TD(10)10003].

    Google Scholar 

  116. A. Richter. On the Estimation of Radio Channel Parameters: Models and Algorithms (RIMAX). PhD thesis, TU-Ilmenau, Ilmenau, Germany, 2005. http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-7407/ilm1-2005000111.pdf.

  117. O. Renaudin and C. Oestges. Influence of measurement bandwidth on wideband mobile radio channel parameters. Technical Report TD(07)365, Duisburg, Germany, September 2007.

    Google Scholar 

  118. K. Shoshan and O. Amrani. Polarized-MIMO capacity analysis in street-canyon using 3D ray-tracing model. In Proc. IEEE 25th Convention of Electrical and Electronical Engineers in Israel, 2008, Eilat, Israel, 2008. [Also available as TD(09)833].

    Google Scholar 

  119. K. Shoshan and O. Amrani. Polarization diversity analysis in rural scenarios using 3D method-of-images model. In Proc. European Conference on Antennas and Propagation (EuCap 2009), Berlin, Germany, 2009. [Also available as TD(09)833].

    Google Scholar 

  120. K. Saito. Time-variant MIMO channel modeling based on measurements in an urban environment. Technical Report TD(10)10050, Athens, Greece, February 2010.

    Google Scholar 

  121. S. Salous. Simultaneous measurements in multiple frequency bands. Technical Report TD(07)259, Lisbon, Portugal, February 2007.

    Google Scholar 

  122. A. Sibille. Efficient generation of spatially and frequency correlated random values for cognitive radio network simulators. IEEE Trans. Veh. Technol., 59(3):1121–1128, 2001. [Also available as TD(09)949].

    Article  Google Scholar 

  123. K. Saito, T. Kitao, T. Imai, Y. Okano, and S. Miura. The modeling methods of time-correlated MIMO channels using the particle filter. Technical Report TD(10)11086, Aalborg, Denmark, June 2011.

    Google Scholar 

  124. G. Steinbock, T. Pedersen, and B. H. Fleury. Model for path loss of in room reverberant channels. In Proc. Globecom 2010—IEEE Global Telecommunications Conf., 2010.

    Google Scholar 

  125. J. Salmi, J. Poutanen, K. Haneda, A. Richter, V.-M. Kolmonen, P. Vainikainen, and A. F. Molisch. Incorporating diffuse scattering in geometry-based stochastic MIMO channel models. In Proc. 4th European Conference on Antennas and Propagation 2010 (EuCAP 2010), Barcelona, Spain, April 2010. C21P1-3. [Also available as COST 2100 TD(10)11047].

    Google Scholar 

  126. J. Salmi, A. Richter, and V. Koivunen. Detection and tracking of MIMO propagation path parameters using state-space approach. IEEE Trans. Signal Processing, 57(4):1538–1550, 2009.

    Article  MathSciNet  Google Scholar 

  127. C. Schneider and R. Thomä. Analysis of local quasi-stationarity regions in an urban macrocell scenario. Technical Report TD(10)10081, Athens, Greece, February 2010. To be presented at VTC Spring 2010.

    Google Scholar 

  128. M. Steinbauer. The radio propagation channel, a non-directional, directional, and double-directional point-of-view. PhD thesis, Technische Universität Wien, November 2001.

    Google Scholar 

  129. S. Torrico and R. Lang. Millimeter wave scattering and attenuation prediction from a volume with random located lossy-dielectric discs and cylinders: forward scattering approximation. Technical Report.

    Google Scholar 

  130. S. Torrico and R. Lang. Diffraction and scattering effects of trees and houses on path loss in a vegetated residential environment. Technical Report TD(08)507, Trondheim, Norway, June 2008.

    Google Scholar 

  131. E. Vitucci, V. Degli-Esposti, F. Mani, and C. Oestges. A study on polarimetric properties of scattering from building walls. In Proc. VTC 2010 Fall—IEEE 72nd Vehicular Technology Conf., Ottawa, Canada, September 2010. [Also available as TD(10)11020].

    Google Scholar 

  132. E. Vitucci, V.-M. Kolmonen, V. Degli-Esposti, and P. Vainikainen. Analysis of radio propagation in co- and cross-polarization in urban environment. In Proc. 10th International Symposium on Spread Spectrum Techniques and Applications (ISSSTA 2008), Bologna, Italy, August 2008. [Also available as TD(08)666].

    Google Scholar 

  133. E. Vitucci, V.-M. Kolmonen, V. Degli-Esposti, and P. Vainikainen. Analysis of X-pol propagation in microcellular environment. In Proc. 11th International Conference on Electromagnetics in Advanced Applications (ICEAA 09), Torino, Italy, September 2009. [Also available as TD(08)666].

    Google Scholar 

  134. P. Vieira, M. P. Queluz, and A. A. Rodrigues. Clustering of scatterers in mobile radio channels—an approach for macro-cell environment over irregular terrain. Technical Report TD-07-219, Lisbon, Portugal, February 2007.

    Google Scholar 

  135. A. Valcarce, G. De La Roche, and J. Zhang. On the use of a lower frequency in finite-difference simulations for urban radio coverage. In 69th IEEE Vehicular Technology Conference (VTC Spring 2008), pages 270–274, Barcelona, Spain, April 2008. [Also available as TD(08)408].

    Google Scholar 

  136. R. Zentner and A. Katalinic. Dynamics of multipath variations in urban environment. In Proc. 3rd European Wireless Technology Conference, EuWiT 2010, Paris, France, September 2010. [Also available as TD(10)12071].

    Google Scholar 

  137. M. Zhu, F. Tufvesson, and G. Eriksson. Validation of 300 MHz MIMO measurements in suburban environments for the COST 2100 MIMO channel model. Technical Report TD(10)12048, Bologna, Italy, November 2010.

    Google Scholar 

  138. M. Zhu, F. Tufvesson, and J. Medbo. Correlation properties of large scale parameters from multi-site macro cell measurements at 2.66 GHz. Technical Report TD-10-12049, Bologna, Italy, November 2010.

    Google Scholar 

  139. M. Zhu, F. Tufvesson, S. Wyne, G. Eriksson, and A. Molisch. Parametrization of 300 MHz MIMO measurements in suburban environments for the COST 2100 MIMO channel model. Technical Report TD(10)11071, Aalborg, Denmark, June 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Oestges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Oestges, C. et al. (2012). Radio Channel Modeling for 4G Networks. In: Verdone, R., Zanella, A. (eds) Pervasive Mobile and Ambient Wireless Communications. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2315-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2315-6_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2314-9

  • Online ISBN: 978-1-4471-2315-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics