Advertisement

Channel Measurements

  • Nicolai Czink
  • Alexis Paolo Garcia Ariza
  • Katsuyuki Haneda
  • Martin Jacob
  • Johan Kåredal
  • Martin Käske
  • Jonas Medbo
  • Juho Poutanen
  • Jussi Salmi
  • Gerhard Steinböck
  • Klaus Witrisal
Part of the Signals and Communication Technology book series (SCT)

Abstract

Radio channel measurements and channel modeling have always been a driving force of the wireless COST actions. These high spirits have been kept up also in COST 2100, where significant advances, particularly in channel measurements, have been made. Channel measurements are indispensable for wireless system design. It is the wireless channel that determines the ultimate performance limits of any communication system. In the beginnings of cellular communications, fading and path loss of the narrowband channel were the key figures of merit. This has changed with wideband multiantenna, multiuser systems. New important features of the radio channel became obvious: the channels’ frequency selectivity, directivity, polarimetric properties, and their relation to channels of the other users. Also for emerging systems, the channel properties need to be identified and modeled: Peer-to-peer systems, which employ distributed nodes indoors or outdoors, show surprising fading characteristics. The propagation channels between vehicles suffer from severe fading under high Doppler shifts. Ultrawideband systems provide an extremely high delay resolution, which needs to be captured. Finally, radio systems using millimeter and submillimeter waves experience strong shadowing by human bodies. All these effects need to be measured and modeled accordingly.

Keywords

Radio Channel Antenna Array Extend Kalman Filter Channel Measurement Beam Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AAM09]
    A. Adalan, H. Arthaber, and C. Mecklenbraeuker. On the potential of IEEE 802.15.4a for use in car safety and healthcare applications. Technical Report TD-09-865, Valencia, Spain, May 2009. Google Scholar
  2. [AFG+09]
    A. Adalan, M. Fischer, T. Gigl, K. Witrisal, A. L. Scholtz, and C. F. Mecklenbraeuker. Ultra-wideband radio pulse shaping filter design for IEEE 802.15.4a transmitter. In Proc. WCNC 2009—IEEE Wireless Commun. and Networking Conf., Budapest, Hungary, April 2009. Google Scholar
  3. [AGFW09]
    A. Adalan, T. Gigl, M. Fischer, and K. Witrisal. A modular impulse radio ultra-wideband research & development platform for IEEE 802.15.4a. In European Conference on Wireless Technologies, ECWT, pages 116–119, Rome, Italy, September 2009. Google Scholar
  4. [ASQ09]
    J. Ahmadi-Shokouh and R. C. Qiu. Ultra-wideband (UWB) communications channel measurements—a tutorial review. Int. J. Ultra Wideband Communications and Systems, 1(1):11–31, 2009. CrossRefGoogle Scholar
  5. [BDHZ10]
    R. J. C. Bultitude, G. S. Dahman, R. H. M. Hafez, and H. Zhu. Double directional radio propagation measurements and radio channel modelling pertinent to mobile MIMO communications in microcells. Technical Report TD-10-11019, Aalborg, Denmark, June 2010. Google Scholar
  6. [BLM04]
    J. R. Barry, E. A. Lee, and D. G. Messerschmitt. Digital Communication, 3rd edition. Kluwer, Boston, USA, 2004. Google Scholar
  7. [BS87]
    P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House, Norwood, 1987. Google Scholar
  8. [CAS08]
    L. Clavier, N. Azzaoui, and W. Sawaya. UWB and 60 GHz channel model as an α-stable random process. Technical Report TD(08)634, Lille, France, October 2008. Google Scholar
  9. [CBVV+08a]
    N. Czink, B. Bandemer, G. Vazquez-Vilar, L. Jalloul, and A. Paulraj. Can multi-user MIMO measurements be done using a single channel sounder? Technical Report TD-08-621, Lille, France, October 2008. Google Scholar
  10. [CBVV+08b]
    N. Czink, B. Bandemer, G. Vazquez-Vilar, L. Jalloul, and A. Paulraj. Stanford July 2008 radio channel measurement campaign. Technical Report TD-08-620, Lille, France, October 2008. Google Scholar
  11. [CCC10a]
    Q. Chu, J.-M. Conrat, and J.-C. Cousin. On the impact of receive antenna height in a LTE-advanced relaying scenario. Technical Report TD-10-11005, Aalborg, Denmark, June 2010. Google Scholar
  12. [CCC10b]
    Q. Chu, J.-M. Conrat, and J.-C. Cousin. Path loss characterization for LTE-advanced relaying propagation channel. Technical Report TD-10-12019, Bologna, Italy, November 2010. Google Scholar
  13. [CCL+10]
    P. Chambers, P. Castiglione, L. Liu, F. Mani, F. Quitin, O. Renaudin, F. Sanchez-Gonzales, N. Czink, and C. Oestges. PUCCO radio measurement campaign. Technical Report TD-10-11015, Aalborg, Denmark, June 2010. Google Scholar
  14. [CCS+06]
    N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo. A framework for automatic clustering of parametric MIMO channel data including path powers. In Proc. VTC 2006 Fall—IEEE 64th Vehicular Technology Conf., Montreal, Canada, September 2006. Google Scholar
  15. [cha10]
    MEDAV RUSK channel sounder, 2010. http://www.channelsounder.de.
  16. [CO09]
    N. Czink and C. Oestges. Impacts of channel sounder phase noise (forum discussion). Technical Report TD-09-738, Braunschweig, Germany, February 2009. Google Scholar
  17. [Cor06]
    L. M. Correia, editor. Mobile Broadband Multimedia Networks. Academic Press, San Diego, 2006. Google Scholar
  18. [CPB07]
    R. Cepeda, S. C. J. Parker, and M. Beach. The measurement of frequency dependent path loss in residential LOS environments using time domain UWB channel sounding. In IEEE Intern. Conf. on Ultra-Wideband, ICUWB, Singapore, September 2007. [Also available as TD(07)306]. Google Scholar
  19. [CPD10]
    J.-M. Conrat, P. Pajusco, and A. Dunand. On the use of panoramic photography for understanding propagation channel physical phenomena. Technical Report TD(10)12024, Bologna, Italy, November 2010. Google Scholar
  20. [CTB08]
    R. Cepeda, W. Thompson, and M. Beach. On the mathematical modelling and spatial distribution of UWB frequency dependency. In 2008 IET Seminar on Wideband and Ultrawideband Systems and Technologies: Evaluating Current Research and Development, pages 1–5, November 2008. [Also available as TD(08)456]. Google Scholar
  21. [CTT+09]
    C. Cordeiro, S. Trainin, J. Trachewsky, S. Shankar, Y. Liu, G. Basson, and J. Yee. Implications of usage models on TGad network architecture. In IEEE Doc. 802.11-09/0391r0, Vancouver, BC, Canada, March 2009. Google Scholar
  22. [CTW+07]
    N. Czink, R. Tian, S. Wyne, F. Tufvesson, J.-P. Nuutinen, J. Ylitalo, E. Bonek, and A. F. Molisch. Tracking time-variant cluster parameters in MIMO channel measurements. In The 2nd International Conference on Communications and Networking in China (CHINACOM 2007), pages 1147–1151, August 2007. [Also available as TD(07)336]. CrossRefGoogle Scholar
  23. [CZZ04]
    S. Collonge, G. Zaharia, and G. E. Zein. Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6):2396–2406, 2004. CrossRefGoogle Scholar
  24. [DC08]
    A. Dunand and J.-M. Conrat. Polarization behaviour in urban macrocell environments at 2.2 GHz. Technical Report TD-08-406, Wroclaw, Poland, February 2008. Google Scholar
  25. [ECC03]
    ECC. The european table of frequency allocations and utilizations covering the frequency range 9 kHz to 275 GHz. In ERC Report 25, pages 1–268, Dublin, Ireland, January 2003. Google Scholar
  26. [ECM08]
    ECMA. High rate 60 GHz PHY, MAC and HDMI PAL. In ECMA-387, 1st edition, pages 1–344, Geneva, Switzerland, December 2008. Google Scholar
  27. [Ele10]
    Elektrobit EB Propsim Homepage. 2010. http://www.propsim.com.
  28. [ETM07]
    G. Eriksson, F. Tufvesson, and A. F. Molisch. Characteristics of MIMO peer-to-peer propagation channels at 300 MHz. Technical Report TD-07-376, Duisburg, Germany, September 2007. Google Scholar
  29. [EWLT10]
    G. Eriksson, K. Wiklundh, S. Linder, and F. Tufvesson. Directional channel estimates from urban peer-to-peer MIMO measurements at 285 MHz. Technical Report TD-10-12099, Bologna, Italy, November 2010. Google Scholar
  30. [FCC01]
    FCC. Part 15-radio frequency devices section 15.255: operation within the band 57.0–64.0 GHz. In Code of Federal Regulations, pages 1–762, USA, January 2001. Google Scholar
  31. [FCC02]
    FCC. Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First Report and Order, ET Doc. 98-153, FCC 02-48, Adopted: February 14, 2002, Released: April 22, 2002. Google Scholar
  32. [FS10]
    S. Feeney and S. Salous. Implementation of a channel sounder for the 60 GHz band. Technical Report TD-10-10043, Athens, Greece, February 2010. Google Scholar
  33. [FTH+99]
    B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen. Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J. Select. Areas Commun., 17(3):434–450, 1999. CrossRefGoogle Scholar
  34. [Gar10]
    A. Garcia. The 60 GHz in-cabin channel. In IEEE Doc. 802.11-10/0027r0, pages 1–32, Los Angeles, CA, USA, January 2010. Google Scholar
  35. [GBA+09]
    T. Gigl, T. Buchgraber, A. Adalan, J. Preishuber-Pfluegl, M. Fischer, and K. Witrisal. UWB channel characterization using IEEE 802.15.4a demonstrator system. In IEEE Intern. Conf. on Ultra-Wideband, ICUWB, pages 230–234, Vancouver, Canada, September 2009. CrossRefGoogle Scholar
  36. [GBG+09]
    T. Gigl, T. Buchgraber, B. Geiger, A. Adalan, J. Preishuber-Pfluegl, and K. Witrisal. Pathloss and delay spread analysis of multipath intensive environments using IEEE 802.15.4a UWB signals. Technical Report, Vienna, Austria, September 2009. [TD(09)965]. Google Scholar
  37. [GKBT09]
    A. P. Garcia, W. Kotterman, D. Brückner, and R. S. Thomä. 60 GHz in-cabin channel characterisation and human body effects. Technical Report TD-09-756, Braunschweig, Germany, February 2009. Google Scholar
  38. [GKKV10]
    S. Geng, M. Kyrö, V.-M. Kolmonen, and P. Vainikainen. Feasibility Study of E-band Radio for Gigabit Point-to-Point Wireless Communications. Technical Report TD(10)10076, Athens, Greece, February 2010. Google Scholar
  39. [GKT+09]
    A. P. Garcia, W. Kotterman, R. S. Thomä, U. Trautwein, D. Brückner, W. Wirnitzer, and J. Kunisch. 60 GHz in-cabin real-time channel sounding. In Proc. Fourth Int. Conf. on Commun. and Networking in China (ChinaCOM2009), pages 1–5, Xi’an, China, 2009. [Also available as TD(09)877]. CrossRefGoogle Scholar
  40. [GKT+10a]
    A. P. Garcia, W. Kotterman, U. Trautwein, D. Brückner, J. Kunisch, and R. S. Thomä. 60 GHz time-variant shadowing characterization within an Airbus 340. In Prod. 4th European Conf. on Antennas and Propagation (EuCAP 2010), pages 1–5, Barcelona, Spain, 2010. [Also available as TD(09)970]. Google Scholar
  41. [GKT10b]
    M. Goraishi, M. Kim, and J. Takada. Influence of phase noise on the frequency division multiplexing channel sounding. Technical Report TD-10-12044, Bologna, Italy, November 2010. Google Scholar
  42. [GKZ+10]
    A. P. Garcia, W. Kotterman, R. Zetik, M. Kmec, R. Müller, F. Wollenschläger, U. Trautwein, and R. S. Thomä. 60 GHz-ultrawideband real-time multi-antenna channel sounding for multi giga-bit/s access. In IEEE 72nd Vehicular Technology Conference (VTC-Fall 2010), pages 1–6, Ottawa, Canada, September 2010. [Also available as TD(10)11090]. CrossRefGoogle Scholar
  43. [GM+10]
    A. P. Garcia, R. Müller, F. Wollenschläger, L. Xia, A. Schulz, M. Elkhouly, Y. Sun, U. Trautwein, and R. S. Thomä. Dual-polarized architecture for ultrawideband channel sounding at 60 GHz with digital/analog phase control based on 0.25 mm SiGe BiCMOS and LTCC technology. Technical Report TD-10-12015, Bologna, Italy, November 2010. Google Scholar
  44. [GR07a]
    R. Goossens and H. Rogier. 2-D direction-of-arrival estimation in the presence of mutual coupling by exploiting the symmetry in uniform circular array. Technical Report TD-07-214, Lisbon, Portugal, February 2007. Google Scholar
  45. [GR07b]
    R. Goossens and H. Rogier. Improved root-music based 2-d DOA estimation algorithm by considering a cylindrical antenna array configuration. Technical Report TD-07-370, Duisburg, Germany, June 2007. Google Scholar
  46. [GTPPW10]
    T. Gigl, F. Troesch, J. Preishuber-Pfluegl, and K. Witrisal. Maximal operating distance estimation using IEEE 802.15.4a ultra wideband. In Workshop on Positioning, Navigation, and Communication, WPNC, Dresden, Germany, March 2010. Google Scholar
  47. [GTS+10]
    D. P. Gaillot, E. Tanghe, P. Stefanut, W. Joseph, M. Lienard, P. Degaque, and L. Martens. Accuracy of specular path estimates with ESPRIT and RiMAX in the presence of diffuse multipath. Technical Report TD-10-12022, Bologna, Italy, November 2010. Google Scholar
  48. [GTWH10]
    C. Gustafson, F. Tufvesson, S. Wyne, and K. Haneda. Directional analysis of measured 60 GHz indoor radio channels in a conference room. Technical Report TD-10-12077, Bologna, Italy, November 2010. Google Scholar
  49. [GWF+10]
    A. P. Garcia, F. Wollenschläger, S. M. Feeney, S. Salous, and R. S. Thomä. 60 GHz channel sounding based on frequency-modulated-continuous-wave techniques. Technical Report TD-10-10009, Athens, Greece, February 2010. Google Scholar
  50. [HBH03]
    M. P. M. Hall, L. W. Barclay, and M. T. Hewitt. Propagation of Radiowaves, 2nd edition. Institution of Electrical Engineers, Inspec/IEE, 2003. Google Scholar
  51. [HKY+05]
    L. Hentilä, P. Kyösti, J. Ylitalo, X. Zhao, J. Meinilä, and J.-P. Nuutinen. Experimental characterization of multi-dimensional parameters at 2.45 and 5.25 GHz indoor channels. In WPMC2005, Aalborg, Denmark, 2005. See also http://www.propsim.com/. Google Scholar
  52. [HZMN95]
    M. Haardt, M. D. Zoltowski, C. P. Mathews, and J. Nossek. 2D unitary ESPRIT for efficient 2D parameter estimation. In Proc. ICASSP 1995—IEEE Int. Conf. Acoust. Speech and Signal Processing, vol. 3, pages 2096–2099. Detroit, MI, May 1995. CrossRefGoogle Scholar
  53. [IEE04]
    IEEE standard for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems, 2004. Google Scholar
  54. [IEE07]
    IEEE P802.15.4a-2007 (Amendment 1). 802.15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless PANs, 2007. Google Scholar
  55. [IEE09]
    IEEE. Part 15.3: wireless medium access control MAC and physical layer PHY specifications for high rate wireless personal area networks WPANs: Amendment 2: millimeter-wave based alternative physical layer extension. In IEEE P802.15.3c/D02, pages 1–194, New York, USA, July 2009. Google Scholar
  56. [IEE10]
    IEEE. Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 6: Enhancements for very high throughput in the 60 GHz band. In IEEE P802.11ad/D0.1, Unapproved Draft, pages 1–357, New York, USA, June 2010. Google Scholar
  57. [IR03]
    ITU-R. Specification attenuation model for rain for use in prediction methods. In Recommendation ITU-R P.838-2, 2003. Google Scholar
  58. [JD88]
    A. K. Jain and R. C. Dubes, editors. Algorithms for Clustering Data. Prentice Hall, New York, 1988. MATHGoogle Scholar
  59. [JJT+09]
    V. Jungnickel, S. Jaeckel, L. Thiele, L. Jiang, U. Kruger, A. Brylka, and C. von Helmolt. Capacity measurements in a cooperative MIMO network. IEEE Trans. Veh. Technol., 58(5):2392–2405, 2009. [Also available as TD(09)730]. CrossRefGoogle Scholar
  60. [JK09]
    M. Jacob and T. Kürner. Radio channel characteristics for broadband WLAN applications between 67 and 110 GHz. In Proc. The Third European Conference on Ant. and Prop. (EuCAP), pages 1–5, Berlin, Germany, March 2009. [Also available as TD(09)745]. Google Scholar
  61. [JMK10]
    M. Jacob, C. Mbianke, and T. Kürner. A dynamic 60 GHz radio channel model for system level simulations with MAC protocols for IEEE 802.11ad. In Proc. IEEE International Symposium on Consumer Electronics ISCE, Berlin, Germany, June 2010. [Also available as TD(10)1109]. Google Scholar
  62. [JPJ+09]
    M. Jacob, S. Priebe, C. Jastrow, T. Kleine-Ostmann, T. Schrader, and T. Kürner. An overview of ongoing activities in the field of channel modeling, spectrum allocation and standardization for mm-Wave and THz indoor communications. In Proc. Globecom 2009—IEEE Global Telecommunications Conf., pages 1–5, Honolulu, HI, USA, December 2009. [Also available as TD(10)10055]. Google Scholar
  63. [KAK+07]
    J. Koivunen, P. Almers, V.-M. Kolmonen, J. Salmi, A. Richter, F. Tufvesson, P. Suvikunnas, A. Molisch, and P. Vainikainen. Dynamic multi-link indoor MIMO measurements at 5.3 GHz. In Proc. of EuCAP 2007, 2007. Google Scholar
  64. [KAS+]
    V.-M. Kolmonen, P. Almers, J. Salmi, J. Koivunen, K. Haneda, A. Richter, F. Tufvesson, A. F. Molisch, and P. Vainikainen. A dynamic dual-link wideband MIMO channel sounder for 5.3-GHz. IEEE Trans. Instrum. Meas., 59(4):873–883. Google Scholar
  65. [KdJBH08]
    M. Kwakkernaat, Y. de Jong, R. Bultitude, and M. Herben. High-resolution angle-of-arrival measurements on physically-nonstationary mobile radio channels. IEEE Trans. Antennas Propagat., 56(8):2720–2729, 2008. CrossRefGoogle Scholar
  66. [KGL+10]
    F. Kaltenberger, R. Ghaffar, I. Latif, R. Knopp, D. Nusbaum, and H. Callewaert. Comparison of LTE transmission modes in rural areas at 800 MHz. Technical Report TD-10-12080, Bologna, Italy, November 2010. Google Scholar
  67. [KH07]
    M. Kwakkernaat and M. Herben. Analysis of clustered multipath estimates in physically nonstationary radio channels. In Proc. PIMRC 2007—IEEE 18th Int. Symp. on Pers., Indoor and Mobile Radio Commun., pages 1–5, Athens, Greece, September 2007. [Also available as TD(07)324]. Google Scholar
  68. [KH08]
    M. R. J. A. E. Kwakkernaat and M. H. A. J. Herben. Analysis of scattering in mobile radio channels based on clustered multipath estimates. Int. J. Wireless Inf. Networks, 15(3–4):107–116, 2008. [Also available as TD(07)324]. CrossRefGoogle Scholar
  69. [KHH+10]
    V.-M. Kolmonen, K. Haneda, T. Hult, J. Poutanen, F. Tufvesson, and P. Vainikainen. Measurement-based evaluation of interlink correlation for indoor multi-user MIMO channels. Technical Report TD-10-10070, Athens, Greece, February 2010. Google Scholar
  70. [KHS+10]
    M. Kyrö, K. Haneda, J. Simola, P. Vainikainen, K. Takizawa, and H. Hagiwara. 60 GHz radio channel measurements and modelling in hospital environments. Technical Report TD-10-11049, Aalborg, Denmark, June 2010. Google Scholar
  71. [Kiv07]
    J. Kivinen. 60 GHz wideband radio channel sounder. IEEE Trans. Instrum. Meas., 56(5):1266–1277, 2007. CrossRefGoogle Scholar
  72. [KJ09]
    T. Kürner and M. Jacob. Application of ray-tracing to derive channel models for future multi-gigabit-systems. In Proc. International Conference on Electromagnetics in Advanced Applications (ICEAA), pages 1–4, Torino, Italy, September 2009. Google Scholar
  73. [KJGK10]
    F. Kaltenberger, H. Jiang, M. Guillaud, and R. Knopp. Relative channel reciprocity calibration in MIMO/TDD systems. In Proc. ICT Future Network and Mobile Summit, Florence, Italy, June 2010. [Also available as TD(09)950]. Google Scholar
  74. [KKC+08]
    F. Kaltenberger, M. Kountouris, L. S. Cardoso, R. Knopp, and D. Gesbert. Capacity of linear multi-user MIMO precoding schemes with measured channel data. In Proc. IEEE Intl. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Recife, Brazil, July 2008. [Also available as TD(08)407]. Google Scholar
  75. [KLT09]
    M. Käske, M. Landmann, and R. Thomä. Modelling and synthesis of dense multipath propagation components in the angular domain. In 3rd European Conference on Antennas and Propagation (EuCAP 2009), pages 2641–2645, Berlin, Germany, March 2009. [Also available as TD(09)762]. Google Scholar
  76. [KMGT09]
    Y. Konishi, L. Materum, M. Ghoraishi, and J.-i. Takada. Multipath cluster polarization characteristics of a small urban MIMO macrocell. Technical Report TD-09-737, Braunschweig, Germany, February 2009. Google Scholar
  77. [KSH+10]
    M. Kyrö, J. Simola, K. Haneda, S. Ranvier, P. Vainikainen, and K. Takizawa. 60 GHz radio channel measurements and modeling in a shielded room. In IEEE 71st Vehicular Technology Conference (VTC-Spring 2010), pages 1–5, Taipei, Taiwan, May 2010. [Also available as TD(09)980]. CrossRefGoogle Scholar
  78. [KSKT10]
    M. Käske, C. Schneider, W. Kotterman, and R. Thomä. Solving the problem of choosing the right MIMO sounding antenna: embedding/de-embedding. Technical Report TD-10-12081, Bologna, Italy, November 2010. Google Scholar
  79. [KSP+05]
    M. Kmec, J. Sachs, P. Peyerl, P. Rauschenbach, R. Thomae, and R. Zetik. A novel ultra-wideband real-time MIMO channel sounder architecture. In 28th General Assembly of the International Union of Radio Sciences (URSI), New Delhi, India, October 2005. Google Scholar
  80. [KST08]
    W. Kotterman, G. Sommerkorn, and R. Thomä. Ilmenau measurement data for SIG A. Technical Report TD-08-446, Wroclaw, Poland, February 2008. Google Scholar
  81. [KT10]
    M. Käske and R. Thomä. Validation of estimated dense multipath components with respect to antenna array calibration accuracy. In Proc. 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(10)10075]. Google Scholar
  82. [LCK06]
    Z. Lei, F. Chin, and Y.-S. Kwok. UWB ranging with energy detectors using ternary preamble sequences. In Proc. WCNC 2006—IEEE Wireless Commun. and Networking Conf., pages 872–877, 2006. doi: 10.1109/WCNC.2006.1683585. Google Scholar
  83. [LKT07]
    M. Landmann, W. Kottermann, and R. Thomä. On the influence of incomplete data models on estimated angular distributions in channel characterisation. In Proc. 2nd European Conference on Antennas and Propagation (EuCAP 2007), Edinburgh, UK, November 2007. [Also available as TD(07)321]. Google Scholar
  84. [LMF10]
    B. K. Lau, J. Medbo, and J. Furuskog. Downlink cooperative MIMO in urban macrocell environments. In Proc. IEEE Int. Symp. Antennas Propagat. (APS’2010), 2010. Google Scholar
  85. [LSD+09]
    M. Lienard, E. Simon, P. Degauque, J.-M. Molina-Garcia-Pardo, and L. Juan-Llacer. Polarization diversity and MIMO capacity in tunnels. Technical Report TD-09-802, Valencia, Spain, May 2009. Google Scholar
  86. [MB10]
    J. Medbo and J.-E. Berg. Directional propagation characteristics at the base station. Techical Report TD(10)12096, Bologna, Italy, November 2010. Google Scholar
  87. [MFP+08]
    J. Maurer, T. Fügen, M. Porebska, T. Zwick, and W. Wiesbeck. A ray-optical channel model for mobile to mobile communications. Technical Report TD(08)430, Wroclaw, Poland, February 2008. Google Scholar
  88. [MGPRJL08]
    J.-M. Molina-Garcia-Pardo, J.-V. Rodrıguez, and L. Juan-Llacer. Polarized indoor MIMO channel measurements at 2.45 GHz. Technical Report TD-08-605, Lille, France, October 2008. Google Scholar
  89. [Mol09]
    A. F. Molisch. Ultra-wide-band propagation channels. Proc. IEEE, 97(2):353–371, 2009. doi: 10.1109/JPROC.2008.2008836. CrossRefGoogle Scholar
  90. [MRAB05]
    J. Medbo, M. Riback, H. Asplund, and J. Berg. MIMO channel characteristics in a small macrocell measured at 5.25 GHz and 200 MHz bandwidth. In Proc. VTC 2005 Fall—IEEE 62nd Vehicular Technology Conf., pages 372–376, Dallas, TX, September 2005. CrossRefGoogle Scholar
  91. [MSKF10]
    J. Medbo, I. Siomina, A. Kangas, and J. Furuskog. Propagation channel impact on LTE positioning accuracy—a study based on real measurements of observed time difference of arrival. Technical Report TD-10-11079, Aalborg, Denmark, June 2010. Google Scholar
  92. [NKJ+10]
    M. Narandžić, M. Käske, S. Jäckel, G. Sommerkorn, C. Schneider, and R. S. Thomä. Variation of estimated large-scale MIMO channel properties between repeated measurements. Technical Report TD-10-11088, Aalborg, Denmark, June 2010. Google Scholar
  93. [NKS+09]
    M. Narandzic, M. Käske, C. Schneider, G. Sommerkorn, A. Hong, W. A. Th. Kotterman, and R. S. Thomä. On a characterisation of large-scale channel parameters for distributed (multi-link) MIMO—the impact of power level differences. Technical Report TD-09-981, Braunschweig, Germany, February 2009. Google Scholar
  94. [OCB+10]
    C. Oestges, N. Czink, B. Bandemer, P. Castiglione, F. Kaltenberger, and A. J. Paulraj. Experimental characterization and modelling of outdoor-to-indoor and indoor-to-indoor distributed channels. IEEE Trans. Veh. Technol., 59(5):2253–2265, 2010. doi: 10.1109/TVT.2010.2042475. CrossRefGoogle Scholar
  95. [PBK+10]
    A. Paier, L. Bernadó, J. Karedal, O. Klemp, and A. Kwoczek. Overview of vehicle-to-vehicle radio channel measurements for collision avoidance applications. In Proc. VTC 2010 Spring—IEEE 71st Vehicular Technology Conf., Taipei, Taiwan, May 2010. [Also available as TD(09)928]. Google Scholar
  96. [PGR09]
    M. Park, P. Gopalakrishnan, and R. Roberts. Interference mitigation techniques in 60 GHz wireless networks. IEEE Commun. Mag., 47(12):34–40, 2009. CrossRefGoogle Scholar
  97. [PHS+09a]
    J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, F. Tufvesson, T. Hult, and P. Vainikainen. Development of measurement-based ray tracer for multi-link double directional propagation parameters. In Proc. 3rd European Conf. Antennas and Propagation (EuCAP 2009), pages 2622–2626, Berlin, Germany, March 2009. [Also available as TD(09)771]. Google Scholar
  98. [PHS+09b]
    J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, F. Tufvesson, and P. Vainikainen. Analysis of radio wave scattering processes for indoor MIMO channel models. In Proc. PIMRC 2009—IEEE 20th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Tokyo, Japan, September 2009. [Also available as TD(09)839]. Google Scholar
  99. [PJKK08]
    R. Piesiewicz, C. Jansen, M. Koch, and T. Kürner. Measurements and modeling of multiple reflections effect in building materials for indoor communications at THz frequencies. In Proc. German Microwave Conference, GEMIC 2008), pages 3089–3092, Hamburg, Germany, March 2008. [Also available as TD(07)427]. Google Scholar
  100. [PKC+07]
    A. Paier, J. Karedal, N. Czink, H. Hofstetter, C. Dumard, T. Zemen, F. Tufvesson, C. F. Mecklenbräuker, and A. F. Molisch. First results from car-to-car and car-to-infrastructure radio channel measurements at 5.2 GHz. In Proc. PIMRC 2007—IEEE 18th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Athens, Greece, September 2007. [Also available as TD(07)303]. Google Scholar
  101. [PKH+08]
    R. Parviainen, P. Kyösti, Y.-T. Hsieh, P.-A. Ting, J.-S. Chiou, and M. Yang. Results of high speed train channel measurements. Technical Report TD(08)646, Lille, France, October 2008. Google Scholar
  102. [PKZ+08]
    A. Paier, J. Karedal, T. Zemen, N. Czink, C. Dumard, F. Tufvesson, C. F. Mecklenbräuker, and A. F. Molisch. Description of vehicle-to-vehicle and vehicle-to-infrastructure radio channel measurements at 5.2 GHz. Technical Report TD(08)636, Lille, France, October 2008. Google Scholar
  103. [PMB04]
    M. Pesavento, C. F. Mecklenbräuker, and J. F. Böhme. Multidimensional rank reduction estimator for parametric MIMO channel models. EURASIP J. Appl. Signal Process., 2004(1):1354–1363, 2004. Google Scholar
  104. [PQD+09]
    A. Panahandeh, F. Quitin, J. M. Dricot, F. Horlin, C. Oestges, and P. De Doncker. Cross-polar discrimination statistics for outdoor-to-indoor and indoor-to-indoor channels. Technical Report TD-09-815, Valencia, Spain, May 2009. Google Scholar
  105. [PRK85]
    A. Paulraj, R. Roy, and T. Kailath. Estimation of signal parameters via rotational invariance techniques—ESPRIT. In Proc. 19th Asilomar Conference on Circuits, Systems and Computers, pages 83–89, Pacific Grove, CA, November 1985. CrossRefGoogle Scholar
  106. [Pro95]
    J. G. Proakis. Digital Communications, 2nd edition. McGraw-Hill, New York, USA, 1995. Google Scholar
  107. [PSKK07]
    R. Piesiewicz, J. Schoebel, M. Koch, and T. Kürner. Propagation measurements and modeling for future indoor communication systems at THz frequencies. In Proc. Wave Propagation in Communication, Microwave Systems and Navigation (WFMN 2007), Chemnitz, Germany, July 2007. [Also available as TD(07)367]. Google Scholar
  108. [PTA+10]
    A. Paier, R. Tresch, A. Alonso, D. Smely, P. Meckel, Y. Zhou, and N. Czink. Average downstream performance of measured IEEE 802.11p infrastructure-to-vehicle links. In Proc. ICC 2010—IEEE Int. Conf. Commun., Cape Town, South Africa, May 2010. [Also available as TD(10)014]. Google Scholar
  109. [PZB+08]
    A. Paier, T. Zemen, L. Bernadó, G. Matz, J. Karedal, N. Czink, C. Dumard, F. Tufvesson, A. F. Molisch, and C. F. Mecklenbräuker. Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function. In Proc. Int. Workshop Smart Antennas (WSA), pages 9–15, Darmstadt, Germany, 2008. CrossRefGoogle Scholar
  110. [QCOD07]
    F. Quitin, F. H. C. Oestges, and P. De Doncker. Cross-polarized MIMO channel measurements for indoor environments. Technical Report TD-07-388, Duisburg, Germany, September 2007. Google Scholar
  111. [QOHD08a]
    F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Small-scale variations of cross-polar discrimination in polarized MIMO systems. Technical Report TD-08-603, Lille, France, October 2008. Google Scholar
  112. [QOHD08b]
    F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. Spatio-temporal characterization of polarized MIMO channels. Technical Report TD-08-602, Lille, France, October 2008. Google Scholar
  113. [QOHDD10]
    F. Quitin, C. Oestges, F. Horlin, and P. De Doncker. A spatio-temporal channel model for modeling the diffuse multipath component in indoor environments. In Proc. 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(10)003]. Google Scholar
  114. [Ric05]
    A. Richter. Estimation of radio channel parameters: models and algorithms. PhD dissertation, Technischen Universität Ilmenau, Ilmenau, Germany, May 2005. Google Scholar
  115. [RKVO08]
    O. Renaudin, V.-M. Kolmonen, P. Vainikainen, and C. Oestges. Wideband MIMO car-to-car radio channel measurements at 5.3 GHz. In Proc. VTC 2008 Fall—IEEE 68th Vehicular Technology Conf., Calgary, Canada, September 2008. [Also available as TD(08)510]. Google Scholar
  116. [RKVO10]
    O. Renaudin, V.-M. Kolmonen, P. Vainikainen, and C. Oestges. Description of the August 2009 car-to-car radio channel measurement campaign. Technical Report TD(10)013, Athens, Greece, February 2010. Google Scholar
  117. [RPZ09]
    L. Reichardt, J. Pontes, and T. Zwick. Performance improvement using multiple antenna systems for car-to-car communications in urban environment. Technical Report TD(09)966, Vienna, Austria, September 2009. Google Scholar
  118. [RSK06]
    A. Richter, J. Salmi, and V. Koivunen. On distributed scattering in radio channels and its contribution to MIMO channel capacity. In Proc. 1st European Conference on Antennas and Propagation (EuCAP2006), Nice, France, November 2006. Google Scholar
  119. [RTR+08]
    A. Richter, F. Tufvesson, P. S. Rossi, K. Haneda, J. Koivunen, V.-M. Kolmonen, J. Salmi, P. Almers, P. Hammarberg, K. Pölönen, P. Suvikunnas, A. F. Molisch, O. Edfors, V. Koivunen, P. Vainikainen, and R. R. Müller. Wireless LANs with high throughput in interference-limited environments—project summary and outcomes. Technical Report TD-08-432, Wroclaw, Poland, February 2008. Google Scholar
  120. [Sal09]
    J. Salmi. Contributions to measeurement-based dynamic MIMO channel modeling and propagation parameter estimation. PhD dissertation, Helsinki University of Technology, Dept. of Signal Processing and Acoustics, Espoo, Finland, August 2009. [Also available as TD(08)471]. Google Scholar
  121. [SCPF09]
    G. Steinböck, J.-M. Conrat, T. Pedersen, and B. H. Fleury. On initialization and search procedures for iterative high-resolution channel parameter estimators. Technical Report TD-09-956, Vienna, Austria, September 2009. Google Scholar
  122. [SGL07]
    P. Stefanut, D. P. Gaillot, and M. Liénard. Parametric study of the performance of high-resolution estimation algorithms. Technical Report TD-09-763, Braunschweig, Germany, February 2007. Google Scholar
  123. [SHK+07]
    J. Sachs, R. Herrmann, M. Kmec, M. Helbig, and K. Schilling. Recent advances and applications of m-sequence based ultra-wideband sensors. In IEEE Intern. Conf. on Ultra-Wideband, ICUWB, pages 50–55, September 2007. doi: 10.1109/ICUWB.2007.4380914. CrossRefGoogle Scholar
  124. [SJK10]
    M. Schack, M. Jacob, and T. Kürner. Comparison of in-car UWB and 60 GHz channel measurements. In Proc. The Fourth European Conference on Ant. and Prop. (EuCAP), pages 1–5, Barcelona, Spain, March 2010. [Also available as TD(10)11037]. Google Scholar
  125. [SKA+08]
    T. Santos, J. Karedal, P. Almers, F. Tufvesson, and A. Molisch. Scatterer detection by successive cancellation for UWB method and experimental verification. In Proc. VTC 2008 Spring—IEEE 67th Vehicular Technology Conf., pages 445–449, Marina Bay, Singapore, May 2008. [Also available as TD(08)411]. CrossRefGoogle Scholar
  126. [SKI+10a]
    K. Saito, K. Kitao, T. Imai, Y. Okano, and S. Miura. The DoA estimation method using EM/SAGE algorithm and extended MODE algorithm with array interpolation. Technical Report TD-10-12040, Bologna, Italy, November 2010. Google Scholar
  127. [SKI+10b]
    K. Saito, K. Kitao, T. Imai, Y. Okano, and S. Miura. The modeling methods of time-correlated MIMO channels using the particle filter. Technical Report TD-10-11086, Aalborg, Denmark, June 2010. Google Scholar
  128. [Smu02]
    P. F. M. Smulders. Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Commun. Mag., 40(1):140–147, 2002. CrossRefGoogle Scholar
  129. [SOK+08]
    H. Singh, J. Oh, C. Kweon, X. Qin, H.-R. Shao, and C. Ngo. A 60 GHz wireless network for enabling uncompressed video communication. IEEE Commun. Mag., 46(12):71–78, 2008. CrossRefGoogle Scholar
  130. [SPH+10]
    J. Salmi, J. Poutanen, K. Haneda, A. Richter, V.-M. Kolmonen, P. Vainikainen, and A. F. Molisch. Incorporating diffuse scattering in geometry-based stochastic channel models. In Proc. 4th European Conference on Antennas and Propagation (EuCAP 2010), Barcelona, Spain, April 2010. [Also available as TD(10)047]. Google Scholar
  131. [SRE+06]
    J. Salmi, A. Richter, M. Enescu, P. Vainikainen, and V. Koivunen. Propagation parameter tracking using variable state dimension Kalman filter. In Proc. VTC 2006 Spring—IEEE 63rd Vehicular Technology Conf., pages 2757–2761, Melbourne, Australia, May 2006. CrossRefGoogle Scholar
  132. [SRK09]
    J. Salmi, A. Richter, and V. Koivunen. Detection and tracking of MIMO propagation path parameters using state-space approach. IEEE Trans. Signal Processing, 57(4):1538–1550, 2009. MathSciNetCrossRefGoogle Scholar
  133. [SS90]
    P. Stoica and K. C. Sharman. Novel eigenanalysis method for direction estimation. IEE Proc. Radar and Signal Processing, 137(1):19–26, 1990. MathSciNetCrossRefGoogle Scholar
  134. [SSM10]
    J. Salmi, S. Sangodoyin, and A. F. Molisch. High resolution parameter estimation for ultra-wideband MIMO radar. In The 44th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 2010. [Also available as TD(10)12042]. Google Scholar
  135. [SSN+09]
    C. Schneider, G. Sommerkorn, M. Narandzic, M. Käske, A. Hong, V. Algeier, W. A. T. Kotterman, and R. S. Thomä. Part I: Reference campaign—description and application. Technical Report TD-09-776, Braunschweig, Germany, February 2009. Google Scholar
  136. [SV87]
    A. Saleh and R. Valenzuela. A statistical model for indoor multipath propagation. IEEE J. Select. Areas Commun., 5(2):128–137, 1987. CrossRefGoogle Scholar
  137. [WAV]
    IEEE P802.11p/D4.0: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment: Wireless Access in Vehicular Environments (WAVE), Draft 4.0, March 2008. Google Scholar
  138. [WHR+10]
    S. Wyne, K. Haneda, S. Ranvier, F. Tufvesson, and A. Molisch. Beamforming effects on measured mm-wave channel characteristics. Technical Report TD-10-10023, Athens, Greece, February 2010. Google Scholar
  139. [WWW+07]
    M. Webb, G. Watkins, C. Williams, T. Harrold, R. Feng, and M. Beach. Mobile multihop: Measurements vs. models. Technical Report TD-07-322, Duisburg, Germany, September 2007. Google Scholar
  140. [Yin06]
    X. Yin. High-resolution parameter estimation for MIMO channel sounding. PhD dissertation, Department of Electronic Systems, Aalborg University, Aalborg, Denmark, 2006. Google Scholar
  141. [YSH05]
    H. Yang, P. F. M. Smulders, and M. H. A. I. Herben. Indoor channel measurements and analysis in the frequency bands 2 GHz and 60 GHz. In Proc. PIMRC 2005—IEEE 16th Int. Symp. on Pers., Indoor and Mobile Radio Commun., Dublin, Ireland, January 2005. Google Scholar
  142. [YSK+08]
    X. Yin, G. Steinböck, G. E. Kirkelund, T. Pedersen, P. Blattnig, A. Jaquier, and B. H. Fleury. Tracking of time-variant radio propagation paths using particle filtering. In IEEE International Conference on Communications (ICC 2008), pages 920–924, Beijing, China, May 2008. [Also available as TD(07)380]. CrossRefGoogle Scholar
  143. [ZBN05]
    T. Zwick, T. J. Beukema, and H. Nam. Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Trans. Veh. Technol., 54(4):1266–1277, 2005. CrossRefGoogle Scholar
  144. [ZTE+10]
    M. Zhu, F. Tufvesson, G. Eriksson, S. Wyne, and A. F. Molisch. Parameterization of 300 MHz MIMO measurements in suburban environments for the COST 2100 MIMO channel model. Technical Report TD-10-11071, Aalborg, Denmark, June 2010. Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Nicolai Czink
    • 1
  • Alexis Paolo Garcia Ariza
    • 2
  • Katsuyuki Haneda
    • 3
  • Martin Jacob
    • 4
  • Johan Kåredal
    • 5
  • Martin Käske
    • 2
  • Jonas Medbo
    • 6
  • Juho Poutanen
    • 3
  • Jussi Salmi
    • 3
  • Gerhard Steinböck
    • 7
  • Klaus Witrisal
    • 8
  1. 1.Forschungszentrum Telekommunikation Wien (FTW)ViennaAustria
  2. 2.Ilmenau University of TechnologyIlmenauGermany
  3. 3.Aalto UniversityEspooFinland
  4. 4.Technische Universität BraunschweigBraunschweigGermany
  5. 5.Lund UniversityLundSweden
  6. 6.Ericsson ABStockholmSweden
  7. 7.Aalborg UniversityAalborgDenmark
  8. 8.Graz University of TechnologyGrazAustria

Personalised recommendations