Skip to main content

Anaerobic Digestion of Waste

  • Chapter
  • First Online:
Waste to Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

All sustainable development closely links to the context of energy and to appropriate solutions to cope with challenges arising from trends of increasing urbanisation, by at the same time allowing for development of rural areas. Biogas production through anaerobic digestion of biomass, including the organic fraction of waste materials and residues, is a particularly promising choice and experiences increasing interest worldwide. It does not only supply a clean and versatile energy carrier, but is well suited to contribute towards appropriate waste management schemes in urban areas and in agriculture. Biogas production has high potential worldwide, and in this chapter special focus is given to its implementation in countries with economies in development or transition. China and India are countries where biogas production is already well-known and often adopted, and more widespread implementation is to be expected. This book chapter also highlights the topic anaerobic digestion in countries in Latin America and Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An BX (2005) Biogas technology development in the developing countries. J Agric Sci Technol 4(2005):75–82 (Nong Lam University)

    Google Scholar 

  2. Anonymus (2010) Leitfaden Biogas. http://www.gerbio.eu/neu/uploads/media/biogas-handbuch 01 pdf Accessed Dec 2010

  3. Banks CJ, Salter AM, Chesshire M (2007) Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe. Water Sci Technol 55(10):165–173

    Article  Google Scholar 

  4. Batstone DJ, Keller J et al (2002) Anaerobic digestion model no. 1. IWA scientific and technical report no. 13, IWA Publishing, London

    Google Scholar 

  5. Bickel H et al (1995) Natura. Themenband Stoffwechsel, Klett, Stuttgart

    Google Scholar 

  6. Bischofsberger W et al (2005) Anaerobtechnik, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  7. Bo Yu (2007) The analysis of rural household energy choices and the policy of new energy extension—empirical study around Nanjing city, Jiangsu province, Nanjing Agricultural University, June 2007

    Google Scholar 

  8. Borges Neto MR, Carvalho PCM, Carioca JOB, Canafistula FJF (2010) Biogas/photovoltaic hybrid systems for decentralized energy supply of rural areas. Eng Policy 38:4497–4506

    Article  Google Scholar 

  9. Braun R (1982) Biogas Methangärung organischer Abfallstoffe: Grundlage und Anwendungs-beispiele. Springer, Vienna

    Google Scholar 

  10. Buysman E (2009) Biogas for developing countries with cold climates. WECF Women in Europe for a Common Future, geres Cambodia

    Google Scholar 

  11. Cimatoribus C (2009) Simulation and nonlinear control of anaerobic digestion. Dissertation University of Stuttgart, Stuttgarter Berichte zur Abfallwirtschaft, vol 96. Oldenbourg, Munich

    Google Scholar 

  12. Cimatoribus C (2010) Vergärung. In: Kranert M, Cord-Landwehr K (eds) Einführung in die Abfallwirtschaft, 4th edn. Vieweg + Teubner, Wiesbaden

    Google Scholar 

  13. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  14. Eshete G et al (2006) Report on the feasibility study of a national program for domestic biogas in Ethiopia, p 25

    Google Scholar 

  15. FNR (2006) Fachtagung für Nachwachsende Rohstoffe. Biogasgewinnung und -nutzung, 3rd edn. Gülzow

    Google Scholar 

  16. Fraenkel PL (1986) Water lifting devices, Rome, food and agriculture organization of the United Nations, 1986, ISBN 92-5-102515-0

    Google Scholar 

  17. Gehring M, Raninger B, Rundong L (2008) Derzeitiger Stand und neueste Entwicklungen der Bioabfallvergärung in China. In: Bilitewski B et al (eds) 6. Fachtagung Anaerobe biologische Abfallbehandlung, vol 57. Forum für Abfallwirtschaft und Altlasten, Dresden, pp 119–131

    Google Scholar 

  18. GTZ Isat (2010? report not dated, retrieved in 2010) Biogas digest, vol 1, biogas basics. Report produced for the ISAT website on the order of the GTZ project information and advisory service on appropriate technology (ISAT)

    Google Scholar 

  19. GTZ-GATE (1999) Biogas digest, vol 4, biogas country report, information and advisory service on appropriate technology. Eschborn, Germany

    Google Scholar 

  20. GTZ (2007) Feasibility study of a national domestic biogas program in Tanzania—biogas in Tanzania, p 23–24

    Google Scholar 

  21. Herrero JM (2008) Biodigestores familiares: guía de diseño y manual de instalación. GTZ-Energía

    Google Scholar 

  22. Jian L (2009) Socio-economic barriers to biogas development in rural southwest China: an ethnographic case study. Human Organiz 68(4):415–430

    Google Scholar 

  23. Kapp H (1984) Schlammfaulung mit hohem Feststoffgehalt. Dissertation, Stuttgarter Berichte zur Siedlungswasserwirtschaft, vol 86. Oldenbourg, Munich

    Google Scholar 

  24. Lehninger A (1983) Bioenergetik, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  25. Liebetrau J (2008) Regelungsverfahren für die anaerobe Behandlung von organischen Abfällen. Dissertation, Manuskripte zur Abfallwirtschaft, vol 9. Rhombos, Berlin

    Google Scholar 

  26. Löffler D, Kranert M (2010) Simulation-based evaluation of control strategies for anaerobic digestion. ORBIT 2010, organic resources in the carbon economy. In: 7th international conference, 29.06.2010–03.07.2010, Heraklion Crete, Greece, proceedings p 71 and CD-ROM

    Google Scholar 

  27. Loll U (ed) (2002) Mechanische und biologische Verfahren der Abfallbehandlung. Ernst und Sohn, Berlin

    Google Scholar 

  28. Madigan MT et al (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  29. Panic O, Hafner G, Kranert M, Kusch S (2011) Mikrogasnetze-eine innovative Lösung zur Steigerung der Energieeffizienz von Vergärungsanlagen. Energie Wasser-Praxis 2(2011):18–23

    Google Scholar 

  30. Pèrez Porras J, Gebresenbet G (2003) Review of biogas development in developing countries with special emphasis in India. SLU, Department of Agricultural Engineering, rapport 252, Uppsala

    Google Scholar 

  31. Ratkowsky DA et al (1983) Model for bacterial culture growth rate throughout the entire biokinetic range. J Bacteriol 154(3):1222–1226

    Google Scholar 

  32. Sasse L, Kellner C, Kimaro A (1991) Improved biogas unit for developing countries. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn

    Google Scholar 

  33. Schwarz W (2006) Landwirtschaftliche Nutzung der Biogas-Technologie in Lateinamerika, master thesis, University of Stuttgart. Institute of Sanitary Engineering, Water Quality and Solid Waste Management

    Google Scholar 

  34. Sun J et al. (2006) Functions of biogas construction on public health in rural areas. Chinese J Health Edu 22(11)

    Google Scholar 

  35. Suryawanshi PC, Chaudhari AB, Kothari RM (2010) Mesophilic anaerobic digestion: first option for waste treatment in tropical regions. Crit Rev Biotechnol 30(4):259–282

    Article  Google Scholar 

  36. Van Lier JB et al (1997) High rate anaerobic waste water treatment under psychophilic and thermophilic conditions. Water Sci Technol 35(10):199–206

    Article  Google Scholar 

  37. Vögeli Y, Zurbrügg C (2008) Biogas in cities—a new trend? Sandec News 9(2008):8–9

    Google Scholar 

  38. Wang H (2005) Biogas plant in China—status and development. Master thesis University of Stuttgart, Institute of Sanitary Engineering, Water Quality and Solid Waste Management

    Google Scholar 

  39. Zhang P, Wang G (2005) Contribution to reduction of CO2 and SO2 emission by household biogas construction in rural China: analysis and prediction, Transactions of the CSAE 2(12)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kranert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kranert, M., Kusch, S., Huang, J., Fischer, K. (2012). Anaerobic Digestion of Waste. In: Karagiannidis, A. (eds) Waste to Energy. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2306-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2306-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2305-7

  • Online ISBN: 978-1-4471-2306-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics