Advertisement

Bifurcations and Control in a Singular Biological Economic Model

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 421)

Introduction

In the natural world, there are many species whose individuals have a life history that takes them through two stages, juvenile stage and adult stage. Individuals in each stage are identical in biological characteristics, and some vital rates (rates of survival, development, and reproduction) of individuals in a population almost always depend on stage structure. Furthermore, there is a strong interaction relationship between the mature population and the immature population , which is to some extent relevant to the persistence and extinction of the related population. Consequently, it is constructive to investigate the dynamics of such ecosystem without ignorance of stage structure for population.

Keywords

Hopf Bifurcation State Feedback Controller Interior Equilibrium Stage Structure Stability Switch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W.G., Freedman, H.I.: A time-delay model of single-species growth with stage structure. Math. Bios. 101, 139–153 (1990)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aiello, W.G., Freedman, H.J., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52, 855–869 (1992)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Al-Omari, J., Gourley, S.: Stability and traveling fronts in Lotka-Volterra competition models with stage structure. SIAM J. Appl. Math. 63, 2063–2086 (2003)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Arino, O., Sanchez, E., Fathallah, A.: State-dependent delay differential equations in population dynamics: Modeling and analysis. Fiel. Inst. Commu. Amer. Math. Soci. 29, 19–36 (2001)MathSciNetGoogle Scholar
  5. 5.
    Bandyopadhyay, M., Banerjee, S.: A stage-structured prey-predator model with discrete time delay. Appl. Math. Compu. 182, 1385–1398 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Barclay, H.J., Driessche, V.D.: A model for a single species with two life history stages and added mortality. Ecol. Model 11, 157–166 (1980)CrossRefGoogle Scholar
  7. 7.
    Beardmore, R.E.: The singularity-induced bifurcation and its kronecker normal form. SIAM J. Matr. Ana. Appl. 23(1), 126–137 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen, L.S., Ruan, S.G., Zhu, J.: Adv. Top. Biomath. Oscillations in a stage structured predator-prey system with time dependent coefficients. World Scientific, Singapore (1997)Google Scholar
  9. 9.
    Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resource, 2nd edn. John Wiley and Sons, New York (1990)Google Scholar
  10. 10.
    Cui, J., Chen, L.S., Wang, W.D.: The effect of dispersal on population growth with stage-structure. Compu. Math. Appl. 39, 91–102 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Dai, G.R., Tang, M.X.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58(1), 193–210 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dai, L.: Singular Control System. Springer, New York (1989)CrossRefGoogle Scholar
  13. 13.
    Edwards, H.J., Dytham, C., Pitchford, J.W., Righton, D.: Prey selection, vertical migrations and the impacts of harvesting upon the population dynamics of a predator-prey system. Bull. Math. Biol. 69, 1827–1846 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Freedman, H.I., Joseph, W.H.S., Wu, J.H.: A model for the growth of a population exhibiting stage structure: Cannibalism and cooperation. J. Compu. Appl. Math. 52, 177–198 (1994)MATHCrossRefGoogle Scholar
  15. 15.
    Freedman, H., Rao, V.S.H.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45, 991–1004 (1983)MathSciNetMATHGoogle Scholar
  16. 16.
    Gakkhar, S., Singh, B.: The dynamics of a food web consisting of two preys and a harvesting predator. Chaos Soli. Frac. 34(4), 1346–1356 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gordon, H.S.: The economic theory of a common property resource: The fishery. J. Poli. Eco. 62(2), 124–142 (1954)CrossRefGoogle Scholar
  18. 18.
    Gourley, S.A., Kuang, Y.: A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol. 49, 188–200 (2004)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Field. Springer, New York (1983)Google Scholar
  20. 20.
    Gurney, W.S.C., Blythe, S.P., Nisbet, R.M.: Nicholson’s blowflies revisited. Nature 287, 17–21 (1980)CrossRefGoogle Scholar
  21. 21.
    Gurney, W.S.C., Nisbet, R.M.: Fluctuating periodicity, generation separation, and the expression of larval competition. Theo. Popu. Biol. 28, 150–180 (1985)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)Google Scholar
  23. 23.
    Hastings, A.: Age-dependent predation is not a simple process, I, continuous time models. Theo. Popu. Biol. 23, 347–362 (1983)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hastings, A.: Delay in recruitment at different tropic levels: Effects on stability. J. Math. Biol. 21, 35–44 (1984)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics and Dynamical Systems. Cambridge University Press, Cambridge (1998)Google Scholar
  26. 26.
    Huo, H., Li, W., Agarwal, R.P.: Optimal harvesting and stability for two species stage-structured system with cannibalism. Int. J. Appl. Math. 6, 59–79 (2001)MathSciNetMATHGoogle Scholar
  27. 27.
    Jiao, J.J., Chen, L.S.: Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators. Int. J. Biomath. 1(2), 197–208 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kar, T.K., Matsuda, H.: Controllability of a harvested prey-predator with time delay. J. Biol. Syst. 14(2), 243–254 (2006)MATHCrossRefGoogle Scholar
  29. 29.
    Kolesov, Y.S.: Properties of solutions of a class of equations with lag which describe the dynamics of change in the population of a species with the age structure taken into account. Math. USSR Sbo. Tom. 45, 91–100 (1983)MATHCrossRefGoogle Scholar
  30. 30.
    Kot, M.: Elements of Mathematical Biology. Cambridge University Press, Cambridge (2001)Google Scholar
  31. 31.
    Landahl, H.D., Hanson, B.D.: A three stage population model with cannibalism. Bull. Math. Biol. 37, 11–17 (1995)Google Scholar
  32. 32.
    Liu, B., Zhang, Y.J., Chen, L.S.: Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy. Int. J. Bifur. Chaos. 15(2), 517–531 (2005)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Liu, C., Zhang, Q.L., Zhang, Y., Duan, X.D.: Bifurcation and control in a differential-algebraic harvested prey-predator model with stage structure for predator. Int. J. Bifur. Chaos. 18(10), 3159–3168 (2008)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Liu, S.Q., Chen, L.S.: Extinction and permanence in competitive stage-structured system with time delay. Non. Anal. 51, 1347–1361 (2002)MATHCrossRefGoogle Scholar
  35. 35.
    Liu, S.Q., Chen, L.S., Agarwal, R.: Recent progress on stage-structured population dynamics. Math. Compu. Model 36, 1319–1360 (2002)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Liu, S.Q., Chen, L.S., Liu, Z.: Extinction and permanence in nonautonomous competitive system with stage structure. J. Math. Anal. Appl. 274, 667–684 (2002)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Liu, S.Q., Chen, L.S., Luo, G.L., Jiang, Y.L.: Asymptotic behavior of competive Lotka-Volterra system with stage structure. J. Math. Anal. Appl. 271, 124–138 (2002)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Liu, S.Q., Kouche, M., Tatar, N.: Permanence and global asymptotic stability in a stage structured system with distributed delays. J. Math. Anal. Appl. 301, 187–207 (2005)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Magnusson, J.G.: Destabilizing effect of cannibalism on age structured predator-prey system. Math. Bios. 155, 195–200 (1999)CrossRefGoogle Scholar
  40. 40.
    Ou, L., Luo, G.L., Jiang, Y.L., Li, Y.P.: The asymptotic behavior of a stage-structured autonomous predator-prey system with time delay. J. Math. Anal. Appl. 283, 534–548 (2003)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Song, X.Y., Chen, L.S.: Optimal harvesting and stability for a two species competitive system with stage structure. Math. Bios. 170, 173–186 (2001)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Song, X.Y., Chen, L.S.: A predator-prey system with stage structure and harvesting for predator. Anna. Diff. Equa. 18, 264–277 (2002)MathSciNetMATHGoogle Scholar
  43. 43.
    Song, X.Y., Chen, L.S.: Modelling and analysis of a single species system with stage structure and harvesting. Math. Compu. Model 36, 67–82 (2002)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Song, X.Y., Chen, L.S., Neumann, A.U.: Ratio-dependent predator-prey system with stage structure for prey. Disc. Conti. Dyna. Syst. B 4, 747–758 (2004)MATHCrossRefGoogle Scholar
  45. 45.
    Song, X.Y., Cui, J.: The stage-structured predator-prey system with delay and harvesting. Appl. Anal. 81, 1127–1142 (2002)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Song, X.Y., Guo, H.J.: Global stability of a stage-structured predator-prey system. Int. J. Biomath. 1(3), 313–326 (2008)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Tang, S.Y., Chen, L.S.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 44, 185–199 (2002)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Tognetti, K.: The two stage stochastic model. Math. Bios. 25, 195–204 (1975)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Venkatasubramanian, V., Schaettler, H., Zaborszky, J.: Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Trans. Auto. Contr. 40(12), 1992–2013 (1995)MATHCrossRefGoogle Scholar
  50. 50.
    Venkatasubramanian, V.: Singularity induced bifurcation and the van den Pol oscillator. IEEE Trans. Cir. Syst. I 41, 765–769 (1994)MATHCrossRefGoogle Scholar
  51. 51.
    Wang, W.D.: Global dynamics of a population model with stage structure for predator. Advanced Topics in Biomathmatics, pp. 253–257. World Scientific, Singapore (1998)Google Scholar
  52. 52.
    Wang, W.D., Chen, L.S.: A predator-prey system with stage-structure for predator. Compu. Math. Appl. 33, 83–91 (1997)CrossRefGoogle Scholar
  53. 53.
    Wood, S.N., Blythe, S.P., Gurney, W.S.C., Nisbet, R.M.: Instability in mortality estimation schemes related to stage-structure population models. IMA J. Math. Appl. Medi. Biol. 6, 47–68 (1989)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Xu, D., Zhao, X.: Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl. 311(2), 417–438 (2005)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Xu, R., Chaplin, M.A., Davidson, F.A.: Persistence and stability of a stage-structured predator-prey model with time delays. Appl. Math. Comp. 150, 259–277 (2004)MATHCrossRefGoogle Scholar
  56. 56.
    Yang, L.J., Tang, Y.: An improved version of the singularity induced bifurcation theorem. IEEE Tran. Auto. Contr. 49(6), 1483–1486 (2001)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Zhang, H., Georgescu, P., Chen, L.S.: An impulsive predator-prey system with Beddington-DeAngelis functional response and time delays. Int. J. Biomath. 1(1), 1–17 (2008)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Zhang, X., Chen, L., Neumann, U.A.: The stage-structured predator-prey model and optimal harvesting policy. Math. Bios. 168, 201–210 (2000)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Zhang, X., Zhang, Q.L., Zhang, Y.: Bifurcations of a class of singular biological economic models. Chaos Soli. Frac. 42(3), 1485–1494 (2009)MATHCrossRefGoogle Scholar
  60. 60.
    Zhang, Y., Zhang, Q.L.: Chaotic control based on descriptor bioeconomic systems. Contr. Deci. 22(4), 445–452 (2007)Google Scholar
  61. 61.
    Zhang, Y., Zhang, Q.L., Zhao, L.C.: Bifurcations and control in singular biological economical model with stage structure. J. Syst. Engin. 22(3), 232–238 (2007)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.College of SciencesNortheastern UniversityShenyangChina, People’s Republic

Personalised recommendations