Predictive Controller of Mixed Logical Dynamical Systems

  • German Ardul Munoz-Hernandez
  • Sa’ad Petrous Mansoor
  • Dewi Ieuan Jones
Part of the Advances in Industrial Control book series (AIC)


This chapter commences with an introduction to mixed logical dynamical (MLD) systems and then presents a MLD model of hydroelectric stations. The MLD model and the MIMO nonlinear nonelastic model of a hydroelectric plant are compared. The behaviour of the plant under generalised predictive control with constraints (CGPC) and MLD-GPC (GPC with a MLD system as the prediction model) is analysed.


Mixed Integer Linear Programming Model Predictive Control Guide Vane Hydroelectric Plant Predictive Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 19.
    Kundur, P.: Power System Stability and Control New York. Mc Graw Hill, New York (1994)Google Scholar
  2. 33.
    Mansoor, S.P.: Behaviour and operation of pumped storage hydro plants. Ph.D. thesis, Bangor University, Bangor (2000)Google Scholar
  3. 94.
    MathWorks: Using Matlab, Version 6. MathWorks, Natick (2000)Google Scholar
  4. 131.
    Jones, D.I.: Estimation of power system parameters. IEEE Trans. Power Syst. 19(4), 1980–1989 (2004)ADSCrossRefGoogle Scholar
  5. 133.
    Rossiter, J.A., Neal, P.W., Yao, L.: Applying predictive control to a fossil-fired power station. Trans. Inst. Meas. Control 3, 177–194 (2002)CrossRefGoogle Scholar
  6. 135.
    Munoz-Hernandez, G.A., Jones, D.I.: Simulation studies of a GPC controller for a hydroelectric plant. Trans. Inst. Meas. Control 29(1), 35–51 (2007)CrossRefGoogle Scholar
  7. 136.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, London (2004)zbMATHGoogle Scholar
  8. 153.
    Bemporad, A., Morari, M.H.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 154.
    Bemporad, A., Torrisi, F.D., Morari, M.: Performance analysis of piecewise linear systems and model predictive control systems. In: Conference on Decision and Control, pp. 4957–4962. Sydney (2000)Google Scholar
  10. 155.
    Witsenhausen, H.S.: A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Autom. Control 11, 161–167 (1966)CrossRefGoogle Scholar
  11. 156.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43, 31–45 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 157.
    Gollu, A., Varaiya, P.: Hybrid dynamical systems. In: 28th Conference on Decision and Control, pp. 2708–2712. Omni Press, Tampa (1989)CrossRefGoogle Scholar
  13. 158.
    Cavalier, T.M., Pardalos, P.M., Soyster, A.L.: Modelling and integer programming techniques applied to propositional calculus. Comput. Oper. Res. 17, 561–570 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 159.
    Williams, H.P.: Logic applied to integer programming and integer programming applied to logic. Eur. J. Oper. Res. 81, 605–616 (1995)zbMATHCrossRefGoogle Scholar
  15. 160.
    Tyler, M.L., Morari, M.: Propositional logic in control and monitoring problems. Automatica 35, 565–582 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 161.
    Munoz-Hernandez, G.A., Jones, D.I., Fuentes-Goiz, S.I.: Modelling and simulation of a hydroelectric power station using MLD. In: Proceedings of the 15th International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Pue, Mexico, 2005Google Scholar
  17. 162.
    Munoz-Hernandez, G.A., Jones, D.I., Mansoor, S.P.: Evaluation of a MLD predictive control in a nonlinear model of a power station. In: IASTED Modelling ans Simulation, pp. 422–427. Cancun (2005)Google Scholar
  18. 163.
    Munoz-Hernandez, G.A., Gracios-Marin, C.A., Diaz-Sanchez, A., Mansoor, S.P., Jones, D.I.: Implementing a mixed logical dynamical model of a hydroelectric power station in a FPGA system. In: 2nd International Conference Internacional on Electronic Design (ICED), pp. 136–140, Veracruz (2006)Google Scholar
  19. 164.
    Lu, Q.: SDM hybrid control approach for nonlinear systems and application to power systems. In: International Conference on Power Control, China, pp. 19–23 (2002)Google Scholar
  20. 165.
    Thomas, J.J., Dumur, D., Buisson, D., Falinower, C.: Moving horizon state estimation of hybrid systems. Application to fault detection of sensors of a steam generator. In: Conference on Control Applications, pp. 1375–1380 (2003)Google Scholar
  21. 166.
    Mansoor, S.P., Munoz-Hernandez, G.A.: Development of gain scheduling scheme for pumped storage plant. In: IASTED International Conference on Intelligent Systems and Control, pp. 13–18, Honolulu (2006)Google Scholar
  22. 167.
    Ulieru, M.: Approaching intelligent control systems design. In: International Conference on Intelligent Systems for the 21st Century, pp. 563–568 (1995)Google Scholar
  23. 168.
    Lu, N., Chow, J.H., Desrochers, A.A.: Pumped-Storage hydro-turbine bidding strategies in a competitive electricity market. IEEE Trans. Power Syst. 19, 834–841 (2004)CrossRefGoogle Scholar
  24. 169.
    Pereira, M.V.F., McCoy, M.F., Merrill, H.M.: Managing risk in the new power business. IEEE Comput. Appl. Power 13, 18–24 (2000)CrossRefGoogle Scholar
  25. 170.
    Song, Y., Johns, A.T.: Applications of fuzzy logic in power systems. Power Eng. J. 13, 97–103 (1999)CrossRefGoogle Scholar
  26. 171.
    King, D.J., Bradley, D.A., Mansoor, S.P., Jones, D.I., Aris, F.C., Jones, G.R.: Using a fuzzy inference system to control a pumped storage hydro plant. IEEE Intl. Fuzzy Syst. 3, 1008–1011 (2001)Google Scholar
  27. 172.
    Gallestey, E., Stothert, A., Antoine, M., Morton, S.: Model predictive control and the optimization of power plant load while considering lifetime consumption. IEEE Trans. Power Syst. 186–191, 17 (2002)Google Scholar
  28. 173.
    Chang, G.W., Aganagic, M., Waight, J.G., Medina, J., Burton, T., Reeves, S., Christoforidis, M.: Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. IEEE Trans. Power Syst. 16(4), 743–749 (2001)CrossRefGoogle Scholar
  29. 174.
    Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)CrossRefGoogle Scholar
  30. 175.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 176.
    Bemporad, A., Borrelli, F., Morari, M.: Model predictive control based on linear programming-the explicit solution. IEEE Trans. Autom. Control 47(12), 1974–1985 (2002)MathSciNetCrossRefGoogle Scholar
  32. 177.
    Baotic, M., Christophersen, F.J., Morari, M.: Constrained optimal control of hybrid systems with a linear performance index. IEEE Trans. Autom. Control 51(12), 1903–1919 (2006)MathSciNetCrossRefGoogle Scholar
  33. 178.
    Zeilinger, M.N., Jones, C.N., Morari, M.: Real-time suboptimal model predictive control using a combination of explicit MPC and online optimization. IEEE Trans. Autom. Control 56(7) (2011)Google Scholar
  34. 179.
    Bleris, L.G., Kothare, M.V., Garcia, J., Arnold, M.G.: Embedded model predictive control for system-on-a-chip applications. In: 7th International Symposium on Dynamics and Control of Process Systems, Boston, MA, USA, July 2004Google Scholar
  35. 180.
    Ling, K.V., Yue, S.P., Maciejowski, J.M.: A FPGA implementation of model predictive control (I). In: American Control Conference, p. Paper WeC15.4, Minneapolis (2006)Google Scholar
  36. 181.
    Bleris, L.G., Vouzis, P.D., Arnold, M.G., Kothare, M.V.: A co-processor FPGA platform for the implementation of real-time model predictive control. In: American Control Conference, p. Paper WeC15.1, Minneapolis (2006)Google Scholar
  37. 182.
    Lin-Shi, X., Morel, F., Llor, A.M., Allard, B., Retif, J.M.: Implementation of hybrid control for motor drives. IEEE Trans. Ind. Electron. 54(4), 1946–1952 (2007)CrossRefGoogle Scholar
  38. 183.
    Naouar, M.W., Naassani, A.A., Monmasson, E., Slama-Belkhodja, I.: FPGA-based predictive current controller for synchronous machine speed drive. IEEE Trans. Power Electron. 23(4), 2115–2126 (2008)CrossRefGoogle Scholar
  39. 184.
    Vouzis, P.D., Bleris, L.G., Arnold, M.G., Kothare, M.V.: A system-on-a-chip implementation for embedded real-time model predictive control. IEEE Trans. Control Syst. Technol. 17(5), 1006–1017 (2009)CrossRefGoogle Scholar
  40. 185.
    Shoukry, Y., El-Kharashi, M.V., Hammad, S.: MPC-on-chip: an embedded GPC coprocessor for automotive active suspension systems. IEEE Embed. Syst. Lett. 2(2), 31–34 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • German Ardul Munoz-Hernandez
    • 1
  • Sa’ad Petrous Mansoor
    • 2
  • Dewi Ieuan Jones
    • 3
  1. 1.Instituto Tecnologico de PueblaPueblaMexico
  2. 2.School of Computer ScienceBangor UniversityBangorUK
  3. 3.GWEFR Cyf Pant Hywel PenisarwaunCaernarfonUK

Personalised recommendations