Skip to main content

Forging Mens et Manus: The MIT Experience in Upper Extremity Robotic Therapy

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

MIT’s motto is Mens et Manus, which translates into “Mind and Hand.” It could not be a more appropriate motto for our line of research: using robotics and information technology to forge new or reinforce existing pathways to reconnect the brain to the hand. These reconnections allow an adult who has experienced a stroke or a child with cerebral palsy to improve the quality of their life. This chapter describes our efforts toward this goal since the initial development of the MIT-Manus in 1989. Since then, over 800 stroke patients have enrolled in our multiple studies and we have developed a complete robotic gym for the upper extremity. With the most recent endorsement of the American Heart Association and the Veterans Affairs/Department of Defense for incorporating robot-assisted therapy into stroke rehabilitation for upper extremity, we have begun realizing our motto toward tailoring therapy to a particular need.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller EL, Murray L, Richards L, et al. The comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010;41:2402–48.

    Article  PubMed  Google Scholar 

  2. Department of Veterans Affairs and Department of Defense. VA/DoD clinical practice guideline for the management of stroke rehabilitation. Washington, DC: The Office of Quality and Performance, VA & Quality Management Division, United States Army MEDCOM; 2010.

    Google Scholar 

  3. Duncan PW, Sullivan KJ, Behrman AL, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011;364:2026–36.

    Article  PubMed  CAS  Google Scholar 

  4. Hornby TG, Campbell DD, Kahn JH, et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  5. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  6. Macko RF, Smith GV, Dobrovolny CL, Sorkin JD, Goldberg AP, Silver KH. Treadmill training improves fitness and ambulatory function in chronic stroke patients. Stroke. 2005;36:2206–11.

    Article  PubMed  Google Scholar 

  7. Hogan N, Krebs HI, Charnnarong J, Srikrishna P, Sharon A. MIT-MANUS: a workstation for manual therapy and training. In: Proceedings of the IEEE international workshop on robot and human communication, Tokyo; 1992. p. 161–165.

    Google Scholar 

  8. Hogan N, Krebs HI. Patent No. 5,466,213. USA: 1995.

    Google Scholar 

  9. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6:75–87.

    Article  PubMed  CAS  Google Scholar 

  10. Krebs HI, Ferraro M, Buerger SP, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1:1–5.

    Article  Google Scholar 

  11. Krebs HI, Volpe BT, Williams D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:327–35.

    Article  PubMed  Google Scholar 

  12. Charles SK, Hogan N. Dynamics of wrist rotations. J Biomech. 2011;44(4):614–21.

    Article  PubMed  Google Scholar 

  13. Masia L, Krebs HI, Cappa P, Hogan N. Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE ASME Trans Mechatron. 2007;12(4):399–407.

    Article  PubMed  Google Scholar 

  14. Volpe BT, Krebs HI, Hogan N. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol. 2001;14:745–52.

    Article  PubMed  CAS  Google Scholar 

  15. Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots. 2003;15:7–20.

    Article  Google Scholar 

  16. Emken JL, Bobrow JE, Reinkensmeyer. Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: ICORR 2005 – 9th international conference on rehabilitation robotics, Chicago; 2005. p. 307–312.

    Google Scholar 

  17. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–94.

    Article  PubMed  Google Scholar 

  18. Aisen MK, Krebs HI, Hogan N, McDowell F, Volpe BT. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol. 1997;54:443–6.

    Article  PubMed  CAS  Google Scholar 

  19. Krebs HI, Volpe BT, Aisen ML, Hogan N. Increasing productivity and quality of care: robot-aided neurorehabilitation. VA J Rehabil Res Dev. 2000;37(6):639–52.

    CAS  Google Scholar 

  20. Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53:1874–6.

    Article  PubMed  CAS  Google Scholar 

  21. Ferraro M, Demaio JH, Krol J, Trudell C, Rannekleiv K, Edelstein L, et al. Assessing the motor status score: a scale for the evaluation of upper limb motor outcomes in patients after stroke. Neurorehabil Neural Repair. 2002;16(3):301–7.

    Google Scholar 

  22. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951;74(4):443–80.

    Article  PubMed  CAS  Google Scholar 

  23. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the copenhagen stroke study. Arch Phys Med Rehabil. 1994;75:394–8.

    Article  PubMed  CAS  Google Scholar 

  24. Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS. Outcome and time course of recovery in stroke. Part II: time course of recovery. The Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(5):406–12.

    Article  PubMed  CAS  Google Scholar 

  25. Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS, et al. Outcome and time course of recovery in stroke. Part I: outcome. The Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(5):399–405.

    Article  PubMed  CAS  Google Scholar 

  26. Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  PubMed  CAS  Google Scholar 

  27. Conroy SS, et al. The effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. Arch Phys Med Rehabil November, 2011 issue (Vol. 92, No. 11).

    Google Scholar 

  28. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature. 1996;382:252–5.

    Article  PubMed  CAS  Google Scholar 

  29. Shadmehr R. Generalization as a behavioral window to the neural mechanisms of learning internal models. Hum Mov Sci. 2004;23(5):543–68.

    Article  PubMed  Google Scholar 

  30. Overduin SA, Richardson AG, Lane CE, Bizzi E, Press DZ. Intermittent practice facilitates stable motor memories. J Neurosci. 2006;26(46):11888–92.

    Article  PubMed  CAS  Google Scholar 

  31. Hogan N, Krebs HI, Rohrer B, et al. Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. VA J Rehabil Res Dev. 2006;43(5):605–18.

    Article  Google Scholar 

  32. Schmidt R, Lee T. Motor control and learning: a behavioral emphasis. 4th ed. Champaign: Human Kinetics; 2005.

    Google Scholar 

  33. Ferraro M, Palazzolo JJ, Kroi J, Krebs HI, Hogan N, Volpe BT. Robot aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003;61(11):1604–7.

    Article  PubMed  CAS  Google Scholar 

  34. Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–9.

    Article  PubMed  Google Scholar 

  35. Dipietro L, Krebs HI, Fasoli SE, et al. Changing motor synergies in chronic stroke. J Neurophysiol. 2007;98(2):757–68.

    Article  PubMed  CAS  Google Scholar 

  36. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447–54.

    PubMed  CAS  Google Scholar 

  37. Krebs HI, Volpe BT, Ferraro M, et al. Robot-aided neuro-rehabilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil. 2002;8(4):54–70.

    Article  PubMed  CAS  Google Scholar 

  38. Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000;29(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  39. Pomeroy VM, Dean D, Sykes L, et al. The unreliability of clinical measures of muscle tone: implications for stroke therapy. Age Ageing. 2000;29(3):229–33.

    Article  PubMed  CAS  Google Scholar 

  40. Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):325–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Portions of this chapter were excerpted from previously published work. This work was supported in part by NIH grant #1 R01-HD045343, and the Department of Veterans Affairs, Veteran’s Health Administration, Rehabilitation Research and Development Service, Merit Review Grant #B6935R. H. I. Krebs and N. Hogan are co-inventors in several MIT-held patents for the robotic technology. They hold equity positions in Interactive Motion Technologies, Watertown, MA, USA, the company that manufactures this type of technology under license to MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermano Igo Krebs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Krebs, H.I., Conroy, S.S., Bever, C.T., Hogan, N. (2012). Forging Mens et Manus: The MIT Experience in Upper Extremity Robotic Therapy. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics