Skip to main content

Learning in the Damaged Brain/Spinal Cord: Neuroplasticity

  • Chapter
  • First Online:
  • 1797 Accesses

Abstract

Neuroplasticity refers to the ability of the central nervous system (CNS) to undergo persistent or lasting modifications to the function or structure of its elements. Neuroplasticity is a CNS mechanism that enables successful learning. Likely, it is also the mechanism by which recovery after CNS lesioning is possible. The chapter gives an overview of the phenomena that constitute plasticity and the cellular events leading to them. Evidence for neural plasticity in different regions of the brain and in the spinal cord is summarized in the contexts of learning, recovery, and rehabilitation therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996;119(Pt 4):1199–211.

    PubMed  Google Scholar 

  2. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol. 2007;98(1):54–62.

    PubMed  Google Scholar 

  3. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;10(6):427–55.

    PubMed  Google Scholar 

  4. Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci. 1993;13(3):900–13.

    PubMed  CAS  Google Scholar 

  5. Iordanova MD. Dopaminergic modulation of appetitive and aversive predictive learning. Rev Neurosci. 2009;20(5–6):383–404.

    PubMed  CAS  Google Scholar 

  6. Tranel D, Damasio AR, Damasio H, Brandt JP. Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory. Learn Mem. 1994;1(3):165–79.

    PubMed  CAS  Google Scholar 

  7. Luft AR, Buitrago MM, Ringer T, Dichgans J, Schulz JB. Motor skill learning depends on protein synthesis in motor cortex after training. J Neurosci. 2004;24(29):6515–20.

    PubMed  CAS  Google Scholar 

  8. Luft AR, Buitrago MM, Kaelin-Lang A, Dichgans J, Schulz JB. Protein synthesis inhibition blocks consolidation of an acrobatic motor skill. Learn Mem. 2004;11(4):379–82.

    PubMed  Google Scholar 

  9. D’Agata V, Cavallaro S. Gene expression profiles – a new dynamic and functional dimension to the exploration of learning and memory. Rev Neurosci. 2002;13(3):209–19.

    PubMed  Google Scholar 

  10. D’Agata V, Cavallaro S. Hippocampal gene expression profiles in passive avoidance conditioning. Eur J Neurosci. 2003;18(10):2835–41.

    PubMed  Google Scholar 

  11. Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001;24:299–325.

    PubMed  CAS  Google Scholar 

  12. Miyamoto E. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci. 2006;100(5):433–42.

    PubMed  CAS  Google Scholar 

  13. Davis HP, Squire LR. Protein synthesis and memory: a review. Psychol Bull. 1984;96(3):518–59.

    PubMed  CAS  Google Scholar 

  14. Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64–75.

    PubMed  Google Scholar 

  15. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    PubMed  CAS  Google Scholar 

  16. Kandel ER. Cellular mechanisms of learning and the biological basis of individuality. In: Kandel ER, Schwartz JH, Jessel TM, editors. Principles of neural science. New York: McGraw-Hill; 2000. p. 1247–79.

    Google Scholar 

  17. Rioult-Pedotti MS, Donoghue JP, Dunaevsky A. Plasticity of the synaptic modification range. J Neuro­physiol. 2007;98(6):3688–95.

    PubMed  Google Scholar 

  18. Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science. 2000;290(5491):533–6.

    PubMed  CAS  Google Scholar 

  19. Hagemann G, Redecker C, Neumann-Haefelin T, Freund HJ, Witte OW. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol. 1998;44(2):255–8.

    PubMed  CAS  Google Scholar 

  20. Gasparova Z, Jariabka P, Stolc S. Effect of transient ischemia on long-term potentiation of synaptic transmission in rat hippocampal slices. Neuro Endocrinol Lett. 2008;29(5):702–5.

    PubMed  Google Scholar 

  21. Di Lazzaro V, Profice P, Pilato F, Capone F, Ranieri F, Pasqualetti P, et al. Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex. 2010;20(7):1523–8.

    PubMed  Google Scholar 

  22. Castel-Lacanal E, Marque P, Tardy J, de Boissezon X, Guiraud V, Chollet F, et al. Induction of cortical plastic changes in wrist muscles by paired associative stimulation in the recovery phase of stroke patients. Neurorehabil Neural Repair. 2009;23(4):366–72.

    PubMed  Google Scholar 

  23. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.

    PubMed  CAS  Google Scholar 

  24. Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol. 1998;80(6):3321–5.

    PubMed  CAS  Google Scholar 

  25. Molina-Luna K, Hertler B, Buitrago MM, Luft AR. Motor learning transiently changes cortical somatotopy. Neuroimage. 2008;40(4):1748–54.

    PubMed  Google Scholar 

  26. Jäncke L, Shah NJ, Peters M. Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res Cogn Brain Res. 2000;10(1–2):177–83.

    PubMed  Google Scholar 

  27. Lotze M, Scheler G, Tan H-RM, Braun C, Birbaumer N. The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage. 2003;20(3):1817–29.

    PubMed  CAS  Google Scholar 

  28. Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci. 2003;23(27):9240–5.

    PubMed  CAS  Google Scholar 

  29. Gentner R, Gorges S, Weise D, aufm Kampe K, Buttmann M, Classen J. Encoding of motor skill in the corticomuscular system of musicians. Curr Biol. 2010;20(20):1869–74.

    PubMed  CAS  Google Scholar 

  30. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke. 2000;31(3):656–61.

    PubMed  CAS  Google Scholar 

  31. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: a ­cross-sectional fMRI study. Brain. 2003;126(Pt 6):1430–48.

    PubMed  CAS  Google Scholar 

  32. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.

    PubMed  CAS  Google Scholar 

  33. Seitz RJ, Höflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol. 1998;55(8):1081–8.

    PubMed  CAS  Google Scholar 

  34. Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain. 2002;125(Pt 7):1544–57.

    PubMed  CAS  Google Scholar 

  35. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126(Pt 11):2476–96.

    PubMed  CAS  Google Scholar 

  36. Calautti C, Leroy F, Guincestre JY, Marié RM, Baron JC. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport. 2001;12(18):3883–6.

    PubMed  CAS  Google Scholar 

  37. Calautti C, Baron JC. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke. 2003;34(6):1553–66.

    PubMed  Google Scholar 

  38. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol. 1996;101(4):316–28.

    PubMed  CAS  Google Scholar 

  39. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke. 1998;29(9):1854–9.

    PubMed  CAS  Google Scholar 

  40. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    PubMed  CAS  Google Scholar 

  41. Pearson KG. Plasticity of neuronal networks in the spinal cord: modifications in response to altered sensory input. Prog Brain Res. 2000;12:861–70.

    Google Scholar 

  42. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92(2):421–35.

    PubMed  CAS  Google Scholar 

  43. Lovely RS, Falls LA, Al-Mondhiry HA, Chambers CE, Sexton GJ, Ni H, et al. Association of gammaA/gamma’ fibrinogen levels and coronary artery disease. Thromb Haemost. 2002;88(1):26–31.

    PubMed  CAS  Google Scholar 

  44. Wolpaw JR, Seegal RF, O’Keefe JA. Adaptive plasticity in primate spinal stretch reflex: behavior of synergist and antagonist muscles. J Neurophysiol. 1983;50(6):1312–9.

    PubMed  CAS  Google Scholar 

  45. Wolpaw JR. Operant conditioning of primate spinal reflexes: the H-reflex. J Neurophysiol. 1987;57(2):443–59.

    PubMed  CAS  Google Scholar 

  46. Wolpaw JR, Lee CL. Memory traces in primate spinal cord produced by operant conditioning of H-reflex. J Neurophysiol. 1989;61(3):563–72.

    PubMed  CAS  Google Scholar 

  47. Wolf SL, Segal RL. Reducing human biceps brachii spinal stretch reflex magnitude. J Neurophysiol. 1996;75(4):1637–46.

    PubMed  CAS  Google Scholar 

  48. Van de Crommert HW, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture. 1998;7(3):251–63.

    PubMed  Google Scholar 

  49. Durkovic RG, Damianopoulos EN. Forward and backward classical conditioning of the flexion reflex in the spinal cat. J Neurosci. 1986;6(10):2921–5.

    PubMed  CAS  Google Scholar 

  50. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. J Neurotrauma. 1992;9 Suppl 1:S119–28.

    PubMed  Google Scholar 

  51. Harris-Warrick RM, Marder E. Modulation of neural networks for behavior. Annu Rev Neurosci. 1991;14:39–57.

    PubMed  CAS  Google Scholar 

  52. Dickinson PS. Interactions among neural networks for behavior. Curr Opin Neurobiol. 1995;5(6):792–8.

    PubMed  CAS  Google Scholar 

  53. Katz PS. Intrinsic and extrinsic neuromodulation of motor circuits. Curr Opin Neurobiol. 1995;5(6):799–808.

    PubMed  CAS  Google Scholar 

  54. Pearson KG, Misiaszek JE. Use-dependent gain change in the reflex contribution to extensor activity in walking cats. Brain Res. 2000;883(1):131–4.

    PubMed  CAS  Google Scholar 

  55. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412(1):84–95.

    PubMed  CAS  Google Scholar 

  56. Barbeau H, Rossignol S. Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol. 1994;7(6):517–24.

    PubMed  CAS  Google Scholar 

  57. Skinner RD, Houle JD, Reese NB, Berry CL, Garcia-Rill E. Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats. Brain Res. 1996;729(1):127–31.

    PubMed  CAS  Google Scholar 

  58. Chau C, Barbeau H, Rossignol S. Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J Neurophysiol. 1998;79(6):2941–63.

    PubMed  CAS  Google Scholar 

  59. de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79(3):1329–40.

    PubMed  Google Scholar 

  60. De Leon RD, Hodgson JA, Roy RR, Edgerton VR. Full weight-bearing hind limb standing following stand training in the adult spinal cat. J Neurophysiol. 1998;80(1):83–91.

    PubMed  Google Scholar 

  61. Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull. 2000;53(5):689–710.

    PubMed  CAS  Google Scholar 

  62. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.

    PubMed  Google Scholar 

  63. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93(5):2809–21.

    PubMed  Google Scholar 

  64. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16.

    PubMed  CAS  Google Scholar 

  65. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72(2):479–93.

    PubMed  CAS  Google Scholar 

  66. Yagi T, Shimizu M, Sekine S, Kamio T, Suzuki JI. A new neurotological test for detecting cerebellar dysfunction. Ann N Y Acad Sci. 1981;374:526–31.

    PubMed  CAS  Google Scholar 

  67. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.

    PubMed  CAS  Google Scholar 

  68. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10(1–2):25–61.

    Google Scholar 

  69. Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102.

    PubMed  CAS  Google Scholar 

  70. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–8.

    PubMed  CAS  Google Scholar 

  71. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4(5):467–75.

    PubMed  CAS  Google Scholar 

  72. Luft AR, Schwarz S. Dopaminergic signals in primary motor cortex. Int J Dev Neurosci. 2009;27(5):415–21.

    PubMed  CAS  Google Scholar 

  73. Molina-Luna K, Pekanovic A, Rohrich S, Hertler B, Schubring-Giese M, Rioult-Pedotti MS, et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One. 2009;4(9):e7082.

    PubMed  Google Scholar 

  74. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci. 2011;31(7):2481–7.

    PubMed  CAS  Google Scholar 

  75. Hosp JA, Molina-Luna K, Hertler B, Atiemo CO, Luft AR. Dopaminergic modulation of motor maps in Rat motor cortex: an in vivo study. Neuroscience. 2009;159(2):692–700.

    PubMed  CAS  Google Scholar 

  76. Hosp JA, Hertler B, Atiemo CO, Luft AR. Dopamin­ergic modulation of receptive fields in rat sensorimotor cortex. Neuroimage. 2010;54:154–60.

    PubMed  Google Scholar 

  77. Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30(5):203–10.

    PubMed  CAS  Google Scholar 

  78. Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol. 2004;73(1):61–72.

    PubMed  Google Scholar 

  79. Luft AR, McCombe-Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853–61.

    PubMed  CAS  Google Scholar 

  80. Whitall J, Waller McCombe S, Sorkin JD, Forrester LW, Macko RF, Hanley DF, et al. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil Neural Repair. 2011;25(2):118–29.

    PubMed  Google Scholar 

  81. Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD, et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 2008;39(12):3341–50.

    PubMed  Google Scholar 

  82. Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(Pt 7):1861–72.

    PubMed  Google Scholar 

  83. Reisman DS, McLean H, Bastian AJ. Split-belt treadmill training poststroke: a case study. J Neurol Phys Ther. 2010;34(4):202–7.

    PubMed  Google Scholar 

  84. Jauss M, Krieger D, Hornig C, Schramm J, Busse O. Surgical and medical management of patients with massive cerebellar infarctions: results of the German-Austrian Cerebellar Infarction Study. J Neurol. 1999;246(4):257–64.

    PubMed  CAS  Google Scholar 

  85. Tohgi H, Takahashi S, Chiba K, Hirata Y. Cerebellar infarction. Clinical and neuroimaging analysis in 293 patients. The Tohoku Cerebellar Infarction Study Group. Stroke. 1993;24(11):1697–701.

    PubMed  CAS  Google Scholar 

  86. Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32(2):530–4.

    PubMed  CAS  Google Scholar 

  87. Morton SM, Tseng YW, Zackowski KM, Daline JR, Bastian AJ. Longitudinal tracking of gait and balance impairments in cerebellar disease. Mov Disord. 2010;25(12):1944–52.

    PubMed  Google Scholar 

  88. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.

    PubMed  CAS  Google Scholar 

  89. Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73(22):1823–30.

    PubMed  CAS  Google Scholar 

  90. Gill-Body KM, Popat RA, Parker SW, Krebs DE. Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther. 1997;77(5):534–52.

    PubMed  CAS  Google Scholar 

  91. Vaz DV, Schettino Rde C, de Castro TR Rolla, Teixeira VR, Cavalcanti Furtado SR, de Mello Figueiredo E. Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil. 2008;22(3):234–41.

    PubMed  Google Scholar 

  92. Cernak K, Stevens V, Price R, Shumway-Cook A. Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther. 2008;88(1):88–97.

    PubMed  Google Scholar 

  93. Kleim JA, Swain RA, Armstrong KA, Napper RM, Jones TA, Greenough WT. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem. 1998;69(3):274–89.

    PubMed  CAS  Google Scholar 

  94. Kleim JA, Pipitone MA, Czerlanis C, Greenough WT. Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiol Learn Mem. 1998;69(3):290–306.

    PubMed  CAS  Google Scholar 

  95. Dietz V. Proprioception and locomotor disorders. Nat Rev Neurosci. 2002;3(10):781–90.

    PubMed  CAS  Google Scholar 

  96. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–3.

    PubMed  CAS  Google Scholar 

  97. Dietz V, Wirz M, Colombo G, Curt A. Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin Neurophysiol. 1998;109(2):140–53.

    PubMed  CAS  Google Scholar 

  98. Dietz V. Neurophysiology of gait disorders: present and future applications. Electroencephalogr Clin Neurophysiol. 1997;103(3):333–55.

    PubMed  CAS  Google Scholar 

  99. Popovic MR, Curt A, Keller T, Dietz V. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord. 2001;39(8):403–12.

    PubMed  CAS  Google Scholar 

  100. Fung J, Stewart JE, Barbeau H. The combined effects of clonidine and cyproheptadine with interactive training on the modulation of locomotion in spinal cord injured subjects. J Neurol Sci. 1990;100(1–2):85–93.

    PubMed  CAS  Google Scholar 

  101. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30(4):229–38.

    PubMed  CAS  Google Scholar 

  102. Wernig A, Müller S, Nanassy A, Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995;7(4):823–9.

    PubMed  CAS  Google Scholar 

  103. Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry. 2001;71(1):93–6.

    PubMed  CAS  Google Scholar 

  104. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.

    PubMed  CAS  Google Scholar 

  105. Dietz V, Müller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002;125(Pt 12):2626–34.

    PubMed  Google Scholar 

  106. Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Curr Opin Neurol. 2008;21(1):76–82.

    PubMed  Google Scholar 

  107. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    PubMed  CAS  Google Scholar 

  108. Martino G. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol. 2004;3(6):372–8.

    PubMed  CAS  Google Scholar 

  109. Dietz V. Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull. 2009;78(1):I–VI.

    PubMed  CAS  Google Scholar 

  110. Dietz V, Müller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004;127(Pt 10):2221–31.

    PubMed  Google Scholar 

  111. Dobkin BH, Harkema S, Requejo P, Edgerton VR. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil. 1995;9(4):183–90.

    PubMed  CAS  Google Scholar 

  112. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral ­spinal cord interprets loading during stepping. J Neurophysiol. 1997;77(2):797–811.

    PubMed  CAS  Google Scholar 

  113. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    PubMed  Google Scholar 

  114. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2003;(3):CD002840.

    Google Scholar 

  115. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    PubMed  Google Scholar 

  116. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39–43.

    PubMed  CAS  Google Scholar 

  117. Curt A, Keck ME, Dietz V. Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil. 1998;79(1):81–6.

    PubMed  CAS  Google Scholar 

  118. Basso DM. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys Ther. 2000;80(8):808–17.

    PubMed  CAS  Google Scholar 

  119. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17(1):1–17.

    PubMed  CAS  Google Scholar 

  120. Katoh S, el Masry WS. Neurological recovery after conservative treatment of cervical cord injuries. J Bone Joint Surg Br. 1994;76(2):225–8.

    PubMed  CAS  Google Scholar 

  121. Dietz V, Wirz M, Curt A, Colombo G. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998;36(6):380–90.

    PubMed  CAS  Google Scholar 

  122. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76(2):319–70.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Luft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Luft, A., Bastian, A.J., Dietz, V. (2012). Learning in the Damaged Brain/Spinal Cord: Neuroplasticity. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics