Skip to main content

Lower Extremity Flexible Assist Devices for Locomotion

  • Chapter
  • First Online:
Neurorehabilitation Technology
  • 1720 Accesses

Abstract

A cable-driven locomotor training system (CaLT) has been developed to improve locomotor function in individuals following hemispheric stroke or spinal cord injury (SCI). A key component of this new system is that it is highly backdrivable, which allows for variation to occur in the trajectory of the gait pattern. The new robotic trainer uses a lightweight cable driven with controlled forces applied to the leg (rather than a controlled trajectory). The refore, the CaLT is compliant, and gives patients the freedom to voluntarily move their legs in a natural gait pattern while providing controlled assistance/resistance forces during body weight supported treadmill training (BWSTT).

Fourteen individuals poststroke and nine patients with SCI were recruited to participate in this pilot study to test the feasibility of using the CaLT for gait training. For our stroke survivors, locomotor training was provided using robotic-assisted, body weight supported treadmill training three times a week for 6 weeks. Single training sessions lasted up to 45 min with body weight support provided as necessary. The treadmill speed was consistent with the subject’s maximum comfortable speed. Primary outcome measures were evaluated for each participant prior to training, after 6 weeks of training, and at 8 weeks after training was completed. Primary measures were participant self-selected and fast overground walking velocity, collected on a 10-m instrumented walkway, and walking distance assessed through the 6-min walk. Secondary measures included clinical assessments of balance, muscle tone, and strength. A similar protocol was used for patients with SCI, but locomotor training was provided three times a week for 8 weeks, and outcome measures and clinical assessments were evaluated prior to training, and after 4 and 8 weeks of training. Results from this study indicate that locomotor gait training using the CaLT resulted in a significant improvement in walking function in individuals poststroke or with SCI. Thus, it is feasible to use a flexible cable-driven robotic system, i.e., CaLT, to improve locomotor function in individuals poststroke or with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harwin WS, Patton JL, Edgerton VR. Challenges and opportunities for robot-mediated neurorehabilitation. Proc IEEE. 2006;94(9):1717–26.

    Article  Google Scholar 

  2. Perry J, Garrett M, Gronley JK, et al. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–9.

    Article  PubMed  CAS  Google Scholar 

  3. Jørgensen HS, Nakayama H, Raaschou HO, et al. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:27–32.

    Article  PubMed  Google Scholar 

  4. Treger I, Shames J, Giaquinto S, et al. Return to work in stroke patients. Disabil Rehabil. 2007;29:1397–403.

    Article  PubMed  CAS  Google Scholar 

  5. von Schroeder HP, Coutts RD, Lyden PD, et al. Gait parameters following stroke: a practical assessment. J Rehabil Res Dev. 1995;32:25–31.

    Google Scholar 

  6. Dean CM, Richards CL, Malouin F. Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin Rehabil. 2001;15:415–21.

    Article  PubMed  CAS  Google Scholar 

  7. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84:1185–93.

    Article  PubMed  Google Scholar 

  8. de Haart M, Geurts AC, Huidekoper SC, et al. Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil. 2004;85:886–95.

    Article  PubMed  Google Scholar 

  9. Chen G, Patten C, Kothari DH, et al. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–6.

    Article  PubMed  Google Scholar 

  10. Dobkin BH. The clinical science of neurologic rehabilitation. 2nd ed. Oxford, New York: Oxford University Press; 2003.

    Google Scholar 

  11. NSCISC. Spinal cord injury: facts and figures at a glance. Birmingham: National Spinal Cord Injury Statistical Center; 2010.

    Google Scholar 

  12. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523–9.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson CS, Carter KN, Brownlee WJ, et al. Very long-term outcome after stroke in Auckland, New Zealand. Stroke. 2004;35:1920–4.

    Article  PubMed  Google Scholar 

  14. Field-Fote EC. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys Ther. 2000;80:477–84.

    PubMed  CAS  Google Scholar 

  15. Post M, Noreau L. Quality of life after spinal cord injury. J Neurol Phys Ther. 2005;29:139–46.

    PubMed  Google Scholar 

  16. Noreau L, Fougeyrollas P, Post M, et al. Participation after spinal cord injury: the evolution of conceptualization and measurement. J Neurol Phys Ther. 2005;29:147–56.

    PubMed  Google Scholar 

  17. Barbeau H, McCrea DA, O’Donovan MJ, et al. Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev. 1999;30:27–51.

    Article  PubMed  CAS  Google Scholar 

  18. Pepin A, Ladouceur M, Barbeau H. Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. Spinal Cord. 2003;41:271–9.

    Article  PubMed  CAS  Google Scholar 

  19. Leroux A, Fung J, Barbeau H. Postural adaptation to walking on inclined surfaces: II. Strategies following spinal cord injury. Clin Neurophysiol. 2006;117:1273–82.

    Article  PubMed  Google Scholar 

  20. Dobkin BH. Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials. Curr Opin Neurol. 2009;22:563–9.

    Article  PubMed  Google Scholar 

  21. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  22. Edgerton VR, de Leon RD, Tillakaratne N, et al. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    PubMed  CAS  Google Scholar 

  23. Henry FM. Specificity vs. generality in learning motor skill. In: Brown RC, Kenyon GS, editors. Classical studies on physical activity. Englewood Cliffs: Prentice-Hall; 1968. p. 331–40.

    Google Scholar 

  24. Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.

    Article  PubMed  Google Scholar 

  25. Lotze M, Braun C, Birbaumer N, Anders S, et al. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.

    Article  PubMed  Google Scholar 

  26. Barbeau H, Fung J. The role of rehabilitation in the recovery of walking in the neurological population. Curr Opin Neurol. 2001;14:735–40.

    Article  PubMed  CAS  Google Scholar 

  27. Hesse S, Werner C. Partial body weight supported treadmill training for gait recovery following stroke. Adv Neurol. 2003;92:423–8.

    PubMed  Google Scholar 

  28. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995;26:976–81.

    Article  PubMed  CAS  Google Scholar 

  29. Visintin M, Barbeau H, Korner-Bitensky N, et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29:1122–8.

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83:683–91.

    Article  PubMed  Google Scholar 

  31. Pohl M, Mehrholz J, Ritschel C, et al. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33:553–8.

    Article  PubMed  Google Scholar 

  32. Macko RF, Ivey FM, Forrester LW, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005;36:2206–11.

    Article  PubMed  Google Scholar 

  33. Silver B, Demaerschalk B, Merino JG, et al. Improved outcomes in stroke thrombolysis with pre-specified imaging criteria. Can J Neurol Sci. 2001;28:113–9.

    PubMed  CAS  Google Scholar 

  34. Trueblood PR. Partial body weight treadmill training in persons with chronic stroke. NeuroRehabilitation. 2001;16:141–53.

    PubMed  CAS  Google Scholar 

  35. Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001;15:515–27.

    Article  PubMed  CAS  Google Scholar 

  36. Kosak MC, Reding MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair. 2000;14:13–9.

    Article  PubMed  CAS  Google Scholar 

  37. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80:688–700.

    PubMed  CAS  Google Scholar 

  38. Dietz V, Colombo G, Jensen L, et al. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37:574–82.

    Article  PubMed  CAS  Google Scholar 

  39. Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30:229–38.

    Article  PubMed  CAS  Google Scholar 

  40. Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86:672–80.

    Article  PubMed  Google Scholar 

  41. Dobkin B, Apple D, Barbeau H, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–93.

    Article  PubMed  CAS  Google Scholar 

  42. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29:127–37.

    PubMed  Google Scholar 

  43. Wernig A, Muller S, Nanassy A, et al. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995;7:823–9.

    Article  PubMed  CAS  Google Scholar 

  44. Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37:693–700.

    PubMed  CAS  Google Scholar 

  45. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37:701–8.

    PubMed  CAS  Google Scholar 

  46. HealthSouth®: http://www.healthsouth.com. Accessed 18 Oct 2010.

  47. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39:252–5.

    Article  PubMed  CAS  Google Scholar 

  48. Hornby TG, Campbell DD, Zemon DH, et al. Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury. Top Spinal Cord Inj Rehabil. 2005;11:1–17.

    Google Scholar 

  49. Husemann B, Müller F, Krewer C, et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38:349–54.

    Article  PubMed  Google Scholar 

  50. Mehrholz J, Werner C, Kugler J, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2007;(4):CD006185.

    Google Scholar 

  51. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23:5–13.

    PubMed  Google Scholar 

  52. Hornby TG, Campbell DD, Kahn JH, et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39:1786–92.

    Article  PubMed  Google Scholar 

  53. Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21:17–27.

    Article  PubMed  CAS  Google Scholar 

  54. Swinnen E, Duerinck S, Baeyens JP, et al. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42:520–6.

    Article  PubMed  Google Scholar 

  55. Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain Res Bull. 2009;78:4–12.

    Article  PubMed  Google Scholar 

  56. Hidler JM, Wall AE. Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech. 2005;20:184–93.

    Article  Google Scholar 

  57. Wolbrecht ET, Chan V, Reinkensmeyer DJ, et al. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16:286–97.

    Article  PubMed  Google Scholar 

  58. Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26:10564–8.

    Article  PubMed  CAS  Google Scholar 

  59. Wu M, Hornby TG, Landry JM, Roth H, Schmit BD. A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture. 2011;33(2):256–60. Epub 2011 Jan 12.

    Article  PubMed  Google Scholar 

  60. Perry J. Gait analysis: normal and pathological function. Thorofare: Slack; 1992.

    Google Scholar 

  61. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  PubMed  CAS  Google Scholar 

  62. Harada ND, Chiu V, Stewart AL. Mobility-related function in older adults: assessment with a 6-minute walk test. Arch Phys Med Rehabil. 1999;80:837–41.

    Article  PubMed  CAS  Google Scholar 

  63. Berg K, Wood-Dauphinee S, Williams JI. The Balance Scale: reliability assessment with elderly residents and patients with an acute stroke. Scand J Rehabil Med. 1995;27:27–36.

    PubMed  CAS  Google Scholar 

  64. Lewek MD, Cruz TH, Moore JL, et al. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89:829–39.

    Article  PubMed  Google Scholar 

  65. Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev. 2008;(2):CD006676.

    Google Scholar 

  66. Scivoletto G, Cosentino E, Mammone A, et al. Inflammatory myelopathies and traumatic spinal cord lesions: comparison of functional and neurological outcomes. Phys Ther. 2008;88:471–84.

    Article  PubMed  Google Scholar 

  67. Lemay JF, Nadeau S. Standing balance assessment in ASIA D paraplegic and tetraplegic participants: concurrent validity of the Berg Balance Scale. Spinal Cord. 2010;48:245–50.

    Article  PubMed  Google Scholar 

  68. Hornby TG, Reinkensmeyer DJ, Chen D. Manually-assisted versus robotic-assisted body weight-supported treadmill training in spinal cord injury: what is the role of each? PM R. 2010;2:214–21.

    Article  PubMed  Google Scholar 

  69. Barbeau H, Fung J, Leroux A, et al. A review of the adaptability and recovery of locomotion after spinal cord injury. Prog Brain Res. 2002;137:9–25.

    Article  PubMed  CAS  Google Scholar 

  70. van Hedel HJ, Dietz V. Rehabilitation of locomotion after spinal cord injury. Restor Neurol Neurosci. 2010;28:123–34.

    PubMed  Google Scholar 

  71. Norman KE, Pepin A, Ladouceur M, et al. A treadmill apparatus and harness support for evaluation and rehabilitation of gait. Arch Phys Med Rehabil. 1995;76:772–8.

    Article  PubMed  CAS  Google Scholar 

  72. Aoyagi D, Ichinose WE, Harkema SJ, et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15:387–400.

    Article  PubMed  Google Scholar 

  73. Veneman JF, Kruidhof R, Hekman EE, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15:379–86.

    Article  PubMed  Google Scholar 

  74. Schmidt H, Werner C, Bernhardt R, et al. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil. 2007;4:2.

    Article  PubMed  Google Scholar 

  75. Hussein S, Schmidt H, Volkmar M, et al. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1961–4.

    PubMed  CAS  Google Scholar 

  76. Riener R, Lünenburger L, Jezernik S, et al. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13:380–94.

    Article  PubMed  Google Scholar 

  77. Duschau-Wicke A, von Zitzewitz J, Caprez A, et al. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18:38–48.

    Article  PubMed  Google Scholar 

  78. Agrawal SK, Banala SK, Fattah A, et al. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng. 2007;15:410–20.

    Article  PubMed  Google Scholar 

  79. Gottschall JS, Kram R. Energy cost and muscular activity required for leg swing during walking. J Appl Physiol. 2005;99:23–30.

    Article  PubMed  Google Scholar 

  80. Torres-Oviedo G, Bastian AJ. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation. J Neurosci. 2010;30:17015–22.

    Article  PubMed  CAS  Google Scholar 

  81. Reisman DS, Wityk R, Silver K, Bastian AJ. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair. 2009;23:735–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

These studies were supported by NIH/NICHD, R21HD058267 (Wu), and PVA, #2552 (Wu). We thank Dr. Schmit, BD, Dr. Hornby, TG, Dr. Rymer, WZ, Dr. Yen, SC, Ms. Rafferty M, and Mrs. Zhang YH for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wu, M., Landry, J.M. (2012). Lower Extremity Flexible Assist Devices for Locomotion. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_20

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics