Skip to main content

Functional Assisted Gaming for Upper-Extremity Therapy After Stroke: Background, Evaluation, and Future Directions of the Spring Orthosis Approach

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

We describe the use of a passive, spring-based orthosis approach (as exemplified by T-WREX and Armeo®Spring) to enhance upper-extremity movement therapy after neurologic injury. This approach incorporates an arm exoskeleton that assists a patient in moving his or her weakened arm by using springs to support the weight of the arm: a grip sensor that can sense minimal grasp forces, and thus allows even very weak patients to practice integrating hand movement with arm movement; and a suite of computer games that simulate functional, whole-arm activities and provide objective feedback on performance. This chapter first traces the development of the spring orthosis approach to upper-extremity arm therapy within the context of the development of robot-assisted therapy. Then, this chapter evaluates the spring orthosis approach in light of recent evidence concerning the role of functional exercise, external assistance, and gaming in promoting movement recovery of the arm and hand after stroke. The chapter concludes by analyzing possible future directions for technology for upper-extremity movement therapy relative to the spring orthosis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogan N, Krebs HI, Sharon A, Charnnarong J. Interactive robotic therapist. US Patent 5,466,213; 1995.

    Google Scholar 

  2. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  3. Reinkensmeyer DJ, Dewald JPA, Rymer WZ. Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans Rehabil Eng. 1999;7(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  4. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–20.

    Article  PubMed  Google Scholar 

  5. Prange GB, Jannink MJA, Groothuis CGM, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–84.

    Article  PubMed  Google Scholar 

  6. Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007;14(6):22–44.

    Article  PubMed  Google Scholar 

  7. Mehrholz J, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev. 2008;(4):CD006876.

    Google Scholar 

  8. Volpe BT, Lynch D, Rykman-Berland A, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10.

    Article  PubMed  Google Scholar 

  9. Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  PubMed  CAS  Google Scholar 

  10. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6. Epub 2005 Aug 1918.

    Article  PubMed  CAS  Google Scholar 

  11. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Neurorehabil. 2006;3:12.

    Article  Google Scholar 

  12. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619–30.

    Article  PubMed  Google Scholar 

  13. Reinkensmeyer DJ, Pang CT, Nessler JA, Painter CC. Web-based telerehabilitation for the upper-extremity after stroke. IEEE Trans Neural Sci Rehabil Eng. 2002;10:1–7.

    Article  Google Scholar 

  14. Sanchez RJ, Liu J, Rao S, et al. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):378–89.

    Article  PubMed  Google Scholar 

  15. Rahman T, Sample W, Seliktar R, Alexander M, Scavina M. A body-powered functional upper limb orthosis. J Rehabil Res Dev. 2000;37(6):675–80.

    PubMed  CAS  Google Scholar 

  16. Iwamuro BT, Cruz EG, Connelly LL, Fischer HC, Kamper DG. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the therapy assistant WREX. Arch Phys Med Rehabil. 2008;89(11):2121–8.

    Article  PubMed  Google Scholar 

  17. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  18. Fugl-Meyer AR, Jaasco L, Leyman L, Olsson S, Steglind S. The post-stroke hemiplegic patient. Scand J Rehabil Med. 1975;7:13–31.

    PubMed  CAS  Google Scholar 

  19. van der Kooij H, Prange GB, Krabben T, et al. Preliminary results of training with gravity compensation of the arm in chronic stroke survivors. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2426–9.

    PubMed  Google Scholar 

  20. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.

    Article  PubMed  Google Scholar 

  21. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation. 2008;23(1):81–7.

    PubMed  Google Scholar 

  22. Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ. Motor adaptation as a greedy optimization of error and effort. J Neurophysiol. 2007;97:3997–4006.

    Article  PubMed  Google Scholar 

  23. Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2008;16(3):286–97.

    Article  PubMed  Google Scholar 

  24. Lippman LG, Rees R. Consequences of error production in a perceptual-motor task. J Gen Psychol. 1997;124(2):133–42.

    Article  PubMed  CAS  Google Scholar 

  25. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126(4):866–72.

    Article  PubMed  Google Scholar 

  26. Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.

    Article  PubMed  Google Scholar 

  27. van Asseldonk EH, Wessels M, Stienen AH, van der Helm FC, van der Kooij H. Influence of haptic guidance in learning a novel visuomotor task. J Physiol Paris. 2009;103(3–5):276–85.

    Article  PubMed  Google Scholar 

  28. Hu XL, Tong KY, Song R, Zheng XJ, Leung WW. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabil Neural Repair. 2009;23(8):837–46.

    Article  PubMed  CAS  Google Scholar 

  29. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86(11):1466–78.

    Article  PubMed  Google Scholar 

  30. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  31. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  32. Bohannon RW, Warren ME, Cogman KA. Motor variables correlated with the hand-to-mouth maneuver in stroke patients. Arch Phys Med Rehabil. 1991;7:682–4.

    Google Scholar 

  33. Canning CG, Ada L, Adams R, O’Dwyer NJ. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin Rehabil. 2004;18(3):300–8.

    Article  PubMed  Google Scholar 

  34. Lang CE, Wagner JM, Edwards DF, Dromerick AW. Upper extremity use in people with hemiparesis in the first few weeks after stroke. J Neurol Phys Ther. 2007;31(2):56–63.

    PubMed  Google Scholar 

  35. Harris JE, Eng JJ. Paretic upper-limb strength best explains arm activity in people with stroke. Phys Ther. 2007;87(1):88–97.

    Article  PubMed  Google Scholar 

  36. Landau WM, Sahrmann SA. Preservation of directly stimulated muscle strength in hemiplegia due to stroke. Arch Neurol. 2002;59(9):1453–7.

    Article  PubMed  Google Scholar 

  37. Enoka RM. Neural adaptations with chronic physical activity. J Biomech. 1997;30(5):447–55.

    Article  PubMed  CAS  Google Scholar 

  38. Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–8.

    Article  PubMed  Google Scholar 

  39. Taylor NF, Dodd KJ, Damiano DL. Progressive resistance exercise in physical therapy: a summary of systematic reviews. Phys Ther. 2005;85(11):1208–23.

    PubMed  Google Scholar 

  40. Cai LL, Fong AJ, Otoshi CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006;26(41):10564–8.

    Article  PubMed  CAS  Google Scholar 

  41. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89(8):829–39.

    Article  PubMed  Google Scholar 

  42. Ziegler MD, Zhong H, Roy RR, Edgerton VR. Why variability facilitates spinal learning. J Neurosci. 2010;30(32):10720–6.

    Article  PubMed  CAS  Google Scholar 

  43. Winstein CJ, Pohl PS, Lewthwaite R. Effects of physical guidance and knowledge of results on motor learning: support for the guidance hypothesis. Res Q Exerc Sport. 1994;65(4):316–32.

    PubMed  CAS  Google Scholar 

  44. Marchal Crespo L, Reinkensmeyer DJ. Haptic guidance can enhance motor learning of a steering task. J Mot Behav. 2008;40(6):545–56.

    Article  PubMed  Google Scholar 

  45. Marchal-Crespo L, Furumasu J, Reinkensmeyer DJ. A robotic wheelchair trainer: design overview and a feasibility study. J Neuroeng Rehabil. 2010;7:40.

    Article  PubMed  Google Scholar 

  46. Marchal-Crespo L, McHughen S, Cramer SC, Reinkensmeyer DJ. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task. Exp Brain Res. 2009;201(2):209–20.

    Article  PubMed  Google Scholar 

  47. Milot MH, Marchal-Crespo L, Green CS, Cramer SC, Reinkensmeyer DJ. Comparison of error amplification and haptic guidance training techniques for learning of a timing-based motor task by healthy individuals. Exp Brain Res. 2009;201(2):119–31.

    Article  PubMed  Google Scholar 

  48. Reinkensmeyer DJ, Housman SJ. “If I can’t do it once, why do it a hundred times?”: connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. In: Proceedings of Virtual Rehabilitation Conference, 27–29 Sept 2007, Venice; 2007. p. 44–48.

    Google Scholar 

  49. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neural Eng Rehabil. 2008;6:20.

    Article  Google Scholar 

  50. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168(3):368–83.

    Article  PubMed  Google Scholar 

  51. Emken JL, Reinkensmeyer DJ. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng. 2005;13(1):33–9.

    Article  PubMed  Google Scholar 

  52. Mirelman A, Patritti BL, Bonato P, Deutsch JE. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture. 2010;31(4):433–7.

    Article  PubMed  Google Scholar 

  53. Dobkin BH, Plummer-D’Amato P, Elashoff R, Lee J. International randomized clinical trial, stroke inpatient rehabilitation with reinforcement of walking speed (SIRROWS), improves outcomes. Neurorehabil Neural Repair. 2010;24(3):235–42.

    Article  PubMed  Google Scholar 

  54. Luft AR, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292(15):1853–61.

    Article  PubMed  CAS  Google Scholar 

  55. Richards LG, Senesac CR, Davis SB, Woodbury ML, Nadeau SE. Bilateral arm training with rhythmic auditory cueing in chronic stroke: not always efficacious. Neurorehabil Neural Repair. 2008;22(2):180–4.

    PubMed  Google Scholar 

  56. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–5.

    Article  PubMed  CAS  Google Scholar 

  57. Farrell JF, Hoffman HB, Snyder JL, Giuliani CA, Bohannon RW. Orthotic aided training of the paretic upper limb in chronic stroke: results of a phase 1 trial. NeuroRehabilitation. 2007;22(2):99–103.

    PubMed  Google Scholar 

  58. Hesse S, Schmidt H, Werner C. Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Res Dev. 2006;43(5):671–8.

    Article  PubMed  Google Scholar 

  59. Brokaw EB, Holley RJ, Lum PS. Hand spring operated movement enhancer (HandSOME) device for hand rehabilitation after stroke. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5867–70.

    PubMed  Google Scholar 

  60. Prange GB, Jannink MJ, Stienen AH, van der Kooij H, Ijzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009;23(5):478–85.

    Article  PubMed  CAS  Google Scholar 

  61. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Engin Comput. 2007;45(9):887–900.

    Article  Google Scholar 

  62. Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6:127–42.

    Article  Google Scholar 

  63. Hughes AM, Freeman CT, Burridge JH, Chappell PH, Lewin PL, Rogers E. Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabil Neural Repair. 2009;23:559.

    Article  PubMed  CAS  Google Scholar 

  64. Krishnamoorthy V, Hsu WL, Kesar TM, et al. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback. J Neurol Phys Ther. 2008;32(4):192–202.

    PubMed  Google Scholar 

  65. Gijbels D, Lamers I, Kerkhofs L, Alders G, Knippenberg E, Feys P. The ArmeoSpring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J Neuroeng Rehabil. 2011;8:5.

    Article  PubMed  Google Scholar 

Download references

Disclosure

David Reinkensmeyer has a financial interest in Hocoma AG, a maker of rehabilitation equipment. The terms of this arrangement have been reviewed and approved by the University of California, Irvine in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Reinkensmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Reinkensmeyer, D.J. (2012). Functional Assisted Gaming for Upper-Extremity Therapy After Stroke: Background, Evaluation, and Future Directions of the Spring Orthosis Approach. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics