Skip to main content

Clinical Aspects for the Application of Robotics in Neurorehabilitation

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

In patients suffering from a movement disorder after a stroke or spinal cord injury (SCI), improvement in walking function can be achieved by providing intensive locomotor training. After a stroke or an SCI, neuronal centers below the level of lesion exhibit plasticity that can be exploited by specific training paradigms. In these individuals, human spinal locomotor centers can be activated by an appropriate afferent input. This includes assisting stepping movements of the affected legs and providing body-weight support (BWS), while the subjects stand on a moving treadmill. The stroke and SCI subjects benefit from such locomotor training that enables them to walk over ground.

Load- and hip-joint-related afferent input seems to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected stroke/SCI subjects, rehabilitation robots enable longer, more intensive training than can be achieved by conventional therapies. Robot-assisted treadmill training also offers the ability to standardize training approaches and obtain objective feedback within one training session. This allows clinicians to monitor functional improvements over time. This chapter provides an overview of the clinical aspects available for the application of robotic devices in the neurorehabilitation of stroke and SCI subjects. First, background information is given for the neural mechanisms of gait recovery. Findings from clinical studies are presented covering the feasibility and efficacy of robot-assisted locomotor training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly-Hayes M et al. The American heart association stroke outcome classification: executive summary. Circulation. 1998;97(24):2474–8.

    Article  PubMed  CAS  Google Scholar 

  2. Waters RL et al. Donal Munro lecture: functional and neurologic recovery following acute SCI. J Spinal Cord Med. 1998;21(3):195–9.

    PubMed  CAS  Google Scholar 

  3. Jorgensen HS et al. Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  4. Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25(3):341–4.

    Article  PubMed  CAS  Google Scholar 

  5. Dietz V et al. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.

    Article  PubMed  CAS  Google Scholar 

  6. Hesse S, Werner C. Partial body weight supported treadmill training for gait recovery following stroke. Adv Neurol. 2003;92:423–8.

    PubMed  Google Scholar 

  7. Teasell RW et al. Gait retraining post stroke. Top Stroke Rehabil. 2003;10(2):34–65.

    Article  PubMed  Google Scholar 

  8. Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30(4):229–38.

    Article  PubMed  CAS  Google Scholar 

  9. Wernig A, Nanassy A, Muller S. Laufband (treadmill) therapy in incomplete paraplegia and tetraplegia. J Neurotrauma. 1999;16(8):719–26.

    Article  PubMed  CAS  Google Scholar 

  10. Dietz V. Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull. 2008;76(5):459–63.

    Article  PubMed  CAS  Google Scholar 

  11. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    Article  PubMed  Google Scholar 

  12. Aoyagi D et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):387–400.

    Article  PubMed  Google Scholar 

  13. Bussel B et al. Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain. 1988;111(Pt 5):1235–45.

    Article  PubMed  Google Scholar 

  14. Martino G. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol. 2004;3(6):372–8.

    Article  PubMed  CAS  Google Scholar 

  15. Colombo G et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    PubMed  CAS  Google Scholar 

  16. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.

    PubMed  CAS  Google Scholar 

  17. Riener R et al. Locomotor training in subjects with sensori-motor deficits: an overview of the robotic gait orthosis lokomat. J Healthc Eng. 2010;1(2):197–216.

    Article  Google Scholar 

  18. Edgerton VR et al. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    PubMed  CAS  Google Scholar 

  19. Pearson KG. Neural adaptation in the generation of rhythmic behavior. Annu Rev Physiol. 2000;62:723–53.

    Article  PubMed  CAS  Google Scholar 

  20. Lovely RG et al. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92:421–35.

    Article  PubMed  CAS  Google Scholar 

  21. Lovely RG et al. Weight-bearing hindlimb stepping in treadmill-exercised adult spinal cats. Brain Res. 1990;514:206–18.

    Article  PubMed  CAS  Google Scholar 

  22. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39–43.

    Article  PubMed  CAS  Google Scholar 

  23. Curt A, Keck ME, Dietz V. Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch Phys Med Rehabil. 1998;79(1):81–6.

    Article  PubMed  CAS  Google Scholar 

  24. Curt A, Dietz V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal Cord. 1999;37(3):157–65.

    Article  PubMed  CAS  Google Scholar 

  25. Basso DM. Neuroanatomical substrates of functional recovery after experimental spinal cord injury: implications of basic science research for human spinal cord injury. Phys Ther. 2000;80(8):808–17.

    PubMed  CAS  Google Scholar 

  26. Metz GA et al. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17(1):1–17.

    Article  PubMed  CAS  Google Scholar 

  27. de Leon RD et al. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79(3):1329–40.

    PubMed  Google Scholar 

  28. de Leon RD et al. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol. 1998;80(1):83–91.

    PubMed  Google Scholar 

  29. Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry. 2001;71(1):93–6.

    Article  PubMed  CAS  Google Scholar 

  30. Barbeau H, Rossignol S. Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol. 1994;7(6):517–24.

    Article  PubMed  CAS  Google Scholar 

  31. Skinner RD et al. Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats. Brain Res. 1996;729:127–31.

    Article  PubMed  CAS  Google Scholar 

  32. Vilensky J, O’Connor B. Stepping in nonhuman primates with a complete spinal cord transection: old and new data, and implications for humans. Ann N Y Acad Sci. 1998; 860(Neuronal mechanisms for generating locomotor activity):528–30.

    Google Scholar 

  33. Dietz V. Do human bipeds use quadrupedal coordination? Trends Neurosci. 2002;25:462–7.

    Article  PubMed  Google Scholar 

  34. Fossberg H. Preface. In: Fossberg H, Hirschfeld H, editors. Movement disorders in children: medicine and sport science. Basel: Karger; 1992. p. 7–8.

    Google Scholar 

  35. Kuhn RA. Functional capacity of the isolated human spinal cord. Brain J Neurol. 1950;73(1):1–51.

    Article  CAS  Google Scholar 

  36. Dietz V. Proprioception and locomotor disorders. Nat Rev Neurosci. 2002;3:781–90.

    Article  PubMed  CAS  Google Scholar 

  37. Calancie B et al. Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain. 1994;117(Pt 5):1143–59.

    Article  PubMed  Google Scholar 

  38. Cramer SC, Riley JD. Neuroplasticity and brain repair after stroke. Curr Opin Neurol. 2008;21(1):76–82.

    Article  PubMed  Google Scholar 

  39. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    Article  PubMed  CAS  Google Scholar 

  40. Curt A, Dietz V. Traumatic cervical spinal cord injury: relation between somatosensory evoked potentials, neurological deficit, and hand function. Arch Phys Med Rehabil. 1996;77(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  41. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–3.

    Article  PubMed  CAS  Google Scholar 

  42. Dietz V et al. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism? Brain. 2009;132(Pt 8):2196–205.

    Article  PubMed  CAS  Google Scholar 

  43. Dobkin BH et al. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury. J Neurol Rehabil. 1995;9(4):183–90.

    PubMed  CAS  Google Scholar 

  44. Wirz M et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  45. Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain. 2002;125(Pt 12):2626–34.

    Article  PubMed  Google Scholar 

  46. Harkema SJ et al. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 1997;77(2):797–811.

    PubMed  CAS  Google Scholar 

  47. Pearson KG, Collins DF. Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol. 1993;70(3):1009–17.

    PubMed  CAS  Google Scholar 

  48. Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev. 1992;72(1):33–69.

    PubMed  CAS  Google Scholar 

  49. Banala SK et al. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.

    Article  PubMed  Google Scholar 

  50. Katoh S, el Masry WS. Neurological recovery after conservative treatment of cervical cord injuries. J Bone Joint Surg Br. 1994;76(2):225–8.

    PubMed  CAS  Google Scholar 

  51. Ditunno Jr JF et al. Walking index for spinal cord injury (WISCI): an international multicenter validity and reliability study. Spinal Cord. 2000;38(4):234–43.

    Article  PubMed  Google Scholar 

  52. Maegele M et al. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma. 2002;19(10):1217–29.

    Article  PubMed  CAS  Google Scholar 

  53. Wirz M, et al. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87:1218–22.

    Google Scholar 

  54. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–65.

    Article  PubMed  Google Scholar 

  55. Dietz V. Locomotor training in paraplegic patients. Ann Neurol. 1995;38(6):965.

    Article  PubMed  CAS  Google Scholar 

  56. Visintin M et al. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–8.

    Article  PubMed  CAS  Google Scholar 

  57. Dobkin B et al. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized spinal cord injury locomotor trial. Neurorehabil Neural Repair. 2007;21(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  58. Moseley AM et al. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2003;3:CD002840.

    PubMed  Google Scholar 

  59. Morrison SA, Backus D. Locomotor training: is translating evidence into practice financially feasible? J Neurol Phys Ther. 2007;31(2):50–4.

    PubMed  Google Scholar 

  60. Veneman JF et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  61. Beer S et al. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler. 2008;14(2):231–6.

    Article  PubMed  CAS  Google Scholar 

  62. Borggraefe I et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46(2):125–31.

    PubMed  CAS  Google Scholar 

  63. Borggraefe I et al. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord. 2008;23(2):280–3.

    Article  PubMed  Google Scholar 

  64. Borggraefe I et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502.

    Article  PubMed  Google Scholar 

  65. Hidler J et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  66. Hornby TG et al. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  67. Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.

    PubMed  Google Scholar 

  68. Husemann B et al. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54.

    Article  PubMed  Google Scholar 

  69. Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair. 2008;22(6):661–71.

    Article  PubMed  Google Scholar 

  70. Mayr A et al. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  71. Meyer-Heim A et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94(8):615–20.

    Article  PubMed  CAS  Google Scholar 

  72. Meyer-Heim A et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49(12):900–6.

    Article  PubMed  CAS  Google Scholar 

  73. Schwartz I, et al. editors. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R. 2009;1:516–23.

    Google Scholar 

  74. Westlake KP, Patten C. Pilot study of lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6:18.

    Article  PubMed  Google Scholar 

  75. Dietz V. Good clinical practice in neurorehabilitation. Lancet Neurol. 2006;5(5):377–8.

    Article  PubMed  Google Scholar 

  76. Winchester P et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 2005;19(4):313–24.

    Article  PubMed  Google Scholar 

  77. Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil. 2009;6:36.

    Article  PubMed  Google Scholar 

  78. Mirbagheri MM, et al. Therapeutic effects of robotic-assisted locomotor training on neuromuscular properties. In: Proceedings of the 2005. IEEE 9th international conference on rehabilitation robotics 2005, Chicago; 2005.

    Google Scholar 

  79. Sherman MF, Lam T, Sheel AW. Locomotor-respiratory synchronization after body weight supported treadmill training in incomplete tetraplegia: a case report. Spinal Cord. 2009;47(12):896–8.

    Article  PubMed  CAS  Google Scholar 

  80. Hunt KJ et al. Control of work rate-driven exercise facilitates cardiopulmonary training and assessment during robot-assisted gait in complete spinal cord injury. Biomed Signal Process Control. 2008;3(1):19–28.

    Article  Google Scholar 

  81. Israel JF et al. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86(11):1466–78.

    Article  PubMed  Google Scholar 

  82. Kwakkel G et al. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354(9174):191–6.

    Article  PubMed  CAS  Google Scholar 

  83. Nash MS et al. Metabolic and cardiac responses to robotic-assisted locomotion in motor-complete tetraplegia: a case report. J Spinal Cord Med. 2004;27(1):78–82.

    PubMed  Google Scholar 

  84. Lewek MD et al. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89(8):829–39.

    Article  PubMed  Google Scholar 

  85. Blicher JU, Nielsen JF. Cortical and spinal excitability changes after robotic gait training in healthy participants. Neurorehabil Neural Repair. 2009;23(2):143–9.

    PubMed  Google Scholar 

  86. Kamibayashi K et al. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Eur J Neurosci. 2009;30(1):100–9.

    Article  PubMed  Google Scholar 

  87. Querry RG et al. Synchronous stimulation and monitoring of soleus H reflex during robotic body weight-supported ambulation in subjects with spinal cord injury. J Rehabil Res Dev. 2008;45(1):175–86.

    Article  PubMed  Google Scholar 

  88. Dietz V, Muller R. Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain. 2004;127(Pt 10):2221–31.

    Article  PubMed  Google Scholar 

  89. Magagnin V, et al. Assessment of the cardiovascular regulation during robotic assisted locomotion in normal subjects: autoregressive spectral analysis vs empirical mode decomposition. In: Conference proceedings IEEE engineering medicine biology society 2008. Vancouver; 2008. p. 3844–7.

    Google Scholar 

  90. Magagnin V et al. Evaluation of the autonomic response in healthy subjects during treadmill training with assistance of a robot-driven gait orthosis. Gait Posture. 2009;29(3):504–8.

    Article  PubMed  Google Scholar 

  91. Gonzenbach RR et al. Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats. Ann Neurol. 2010;68(1):48–57.

    Article  PubMed  Google Scholar 

  92. Schwab ME. Regeneration of lesioned CNS axons by neutralisation of neurite growth inhibitors: a short review. Paraplegia. 1991;29(5):294–8.

    Article  PubMed  CAS  Google Scholar 

  93. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76(2):319–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Centre of Competence in Research (NCCR) of the Swiss National Science Foundation (SNF) on Neural Plasticity and Repair and the EU Projects MIMICS and Spinal Cord Repair funded by the European Community’s Seventh Framework Program (FP7/2007–2013).

Disclosure

There exist long-term scientific collaborations and research partnerships among University Hospital Balgrist and the Hocoma Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dietz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dietz, V. (2012). Clinical Aspects for the Application of Robotics in Neurorehabilitation. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics