Skip to main content

Robotics for Stroke Recovery

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

The introduction of robotics into neurorehabilitation is a relatively recent phenomenon. To date, both their acceptance by the rehabilitation community and penetration of robotic devices into rehabilitation facilities have been limited. The majority of clinical studies evaluating the efficacy of rehabilitation robotics to date have framed the question in terms of superiority between robotic approaches and some chosen standard therapy. Not surprisingly, the results of many of these studies have revealed nonsignificant differences between robotic and traditional rehabilitation approaches, which clinicians generally interpret as failure of the robotic approach. Improvements in response to both traditional and robotic approaches yielding results of “no difference” could, however, be interpreted as a positive result. Considered in this light, robotic approaches may offer the opportunity for therapeutic intervention to more individuals and/or may extend the therapeutic opportunity (i.e., dose, time, repetitions) while practitioners focus on other critical aspects of rehabilitation. Here, it is important to recognize that many of the robotic approaches have been designed to mimic currently utilized rehabilitation interventions, at least as these interventions are currently understood. Thus, the modest efficacy of robotic approaches demonstrated to date may stem from limitations in our current understanding of the critical processes of neural recovery, and how to effectively induce neural recovery, rather than from limitations of robotic devices per se. This chapter considers the problem of walking dysfunction following stroke and offers perspectives on the use of the Lokomat to promote walking recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  2. Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair. 2008;22(6):661–71.

    Article  PubMed  Google Scholar 

  3. Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6:18.

    Article  PubMed  Google Scholar 

  4. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):480–6.

    Article  PubMed  Google Scholar 

  5. Williams LS, Kroenke K, Bakas T, et al. Care management of poststroke depression: a randomized, controlled trial. Stroke. 2007;38(3):998–1003.

    Article  PubMed  Google Scholar 

  6. Brandstater ME, de Bruin H, Gowland C, Clark BM. Hemiplegic gait: analysis of temporal variables. Arch Phys Med Rehabil. 1983;64(12):583–7.

    PubMed  CAS  Google Scholar 

  7. Chen G, Patten C, Kothari DH, Zajac FE. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold. Gait Posture. 2005;22(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  8. Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–6.

    Article  PubMed  Google Scholar 

  9. Olney SJ, Monga TN, Costigan PA. Mechanical energy of walking of stroke patients. Arch Phys Med Rehabil. 1986;67(2):92–8.

    Article  PubMed  CAS  Google Scholar 

  10. Olney SJ, Richards C. Hemiparetic gait following stroke part I: characteristics. Gait Posture. 1996;4:136–48.

    Article  Google Scholar 

  11. Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982–9.

    Article  PubMed  CAS  Google Scholar 

  12. Maclean N, Pound P, Wolfe C, Rudd A. Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ. 2000;321(7268):1051–4.

    Article  PubMed  CAS  Google Scholar 

  13. Dean CM, Richards CL, Malouin F. Walking speed over 10 metres overestimates locomotor capacity after stroke. Clin Rehabil. 2001;15(4):415–21.

    Article  PubMed  CAS  Google Scholar 

  14. Wagenaar RC, Meijer OG. Effects of stroke rehabilitation (1). J Rehabil Sci. 1991;4(3):61–73.

    Google Scholar 

  15. Wagenaar RC, Meijer OG. Effects of stroke rehabilitation (2). J Rehabil Sci. 1991;4(4):97–109.

    Google Scholar 

  16. Edgerton VR, Leon RD, Harkema SJ, et al. Retraining the injured spinal cord. J Physiol. 2001;533(Pt 1):15–22.

    Article  PubMed  CAS  Google Scholar 

  17. Richards CL, Malouin F, Wood-Dauphinee S, Williams JI, Bouchard J-P, Brunet D. Task-specific physical therapy for optimization of gait recovery in acute stroke patients. Arch Phys Med Rehabil. 1993;74:612–20.

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt RA. Motor control and learning: a behavioral emphasis. Champaign: Human Kinetics; 1982.

    Google Scholar 

  19. Enoka RM. Neural adaptations with chronic physical activity. J Biomech. 1997;30(5):447–55.

    Article  PubMed  CAS  Google Scholar 

  20. Dean CM, Richards CL, Malouin F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil. 2000;81(4):409–17.

    Article  PubMed  CAS  Google Scholar 

  21. Richards CL, Malouin F, Dean C. Gait in stroke: assessment and rehabilitation. Clin Geriatr Med. 1999;15(4):833–55.

    PubMed  CAS  Google Scholar 

  22. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients. Stroke. 1995;26(6):976–81.

    Article  PubMed  CAS  Google Scholar 

  23. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–8.

    Article  PubMed  CAS  Google Scholar 

  24. Behrman AL. Invited commentary. Phys Ther. 2009;89(6):612–5; author reply 615–616.

    Article  PubMed  Google Scholar 

  25. Pearson KG. Proprioceptive regulation of locomotion. Curr Opin Neurobiol. 1995;5(6):786–91.

    Article  PubMed  CAS  Google Scholar 

  26. Inman VT. Human locomotion. Can Med Assoc J. 1966;94(20):1047–54.

    PubMed  CAS  Google Scholar 

  27. Bobath B. Adult hemiplegia: evaluation and treatment. 3rd ed. Oxford: Butterworth-Heineman Medical Books; 1990.

    Google Scholar 

  28. Dean CM, Ada L, Bampton J, Morris ME, Katrak PH, Potts S. Treadmill walking with body weight support in subacute non-ambulatory stroke improves walking capacity more than overground walking: a randomised trial. J Physiother. 2010;56(2):97–103.

    Article  PubMed  Google Scholar 

  29. Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35 Suppl 2:ii7–11.

    Article  PubMed  Google Scholar 

  30. Barbeau H, Fung J, Visintin M. New approach to retrain gait in stroke and spinal cord injured patients. Neurorehabil Neural Repair. 1999;13(3):177–8.

    Article  Google Scholar 

  31. Barbeau H. Locomotor training in neurorehabilitation: emerging rehabilitation concepts. Neurorehabil Neural Repair. 2003;17(1):3–11.

    Article  PubMed  Google Scholar 

  32. Barbeau H, Danakas M, Arsenault AB. The effects of locomotor training in spinal cord injured subjects: a preliminary study. Restor Neurol Neurosci. 1993;5:81–4.

    PubMed  CAS  Google Scholar 

  33. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–65.

    Article  PubMed  Google Scholar 

  34. Forssberg H, Grillner S, Halbertsma J. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand. 1980;108(3):269–81.

    Article  PubMed  CAS  Google Scholar 

  35. Forssberg H, Grillner S, Halbertsma J, Rossignol S. The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand. 1980;108(3):283–95.

    Article  PubMed  CAS  Google Scholar 

  36. Grillner S. Control of locomotion in bipeds, tetrapods and fish. In: Brooks V, editor. Handbook of physiology. Bethesda: American Physiological Society; 1981. p. 1179–236.

    Google Scholar 

  37. Rossignol S, Dubuc R, Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006;86(1):89–154.

    Article  PubMed  Google Scholar 

  38. Rossignol S. Neural control of stereotypic limb movements. In: Shepherd J, editor. Handbook of physiology, section 12: exercise: regulation and integration of multiple systems. Bethesda: American Physiological Society; 1996. p. 173–216.

    Google Scholar 

  39. Pearson KG, Collins DF. Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol. 1993;70(3):1009–17.

    PubMed  CAS  Google Scholar 

  40. Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol. 2003;114(8):1379–89.

    Article  PubMed  CAS  Google Scholar 

  41. Behrman AL, Cauraugh JH, Light KE. Practice as an intervention to improve speeded motor performance and motor learning in Parkinson’s disease. J Neurol Sci. 2000;174(2):127–36.

    Article  PubMed  CAS  Google Scholar 

  42. Behrman AL, Lawless-Dixon AR, Davis SB, et al. Locomotor training progression and outcomes after incomplete spinal cord injury. Phys Ther. 2005;85(12):1356–71.

    PubMed  Google Scholar 

  43. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80(7):688–700.

    PubMed  CAS  Google Scholar 

  44. Edgerton VR, de Leon R, Tillakaratne N, Hodgson JA. Does motor learning occur in the spinal cord? Neuroscientist. 1997;3:287–94.

    Google Scholar 

  45. Beres-Jones JA, Harkema SJ. The human spinal cord interprets velocity-dependent afferent input during stepping. Brain. 2004;127(Pt 10):2232–46.

    Article  PubMed  Google Scholar 

  46. Field-Fote EC, Lindley SD, Sherman AL. Locomotor training approaches for individuals with spinal cord injury: a preliminary report of walking-related outcomes. J Neurol Phys Ther. 2005;29(3):127–37.

    PubMed  Google Scholar 

  47. Field-Fote E. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured subject. Spinal Cord. 2002;40(8):428.

    Article  PubMed  CAS  Google Scholar 

  48. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    PubMed  CAS  Google Scholar 

  49. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. A physiological basis for the development of rehabilitative strategies for spinally injured patients. J Am Paraplegia Soc. 1991;14(4):150–7.

    PubMed  CAS  Google Scholar 

  50. Barbeau H, Norman K, Fung J, Visintin M, Ladouceur M. Does neurorehabilitation play a role in the recovery of walking in neurological populations? Ann N Y Acad Sci. 1998;860:377–92.

    Article  PubMed  CAS  Google Scholar 

  51. Ada L, Dean CM, Hall JM, Bampton J, Crompton S. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2003;84(10):1486–91.

    Article  PubMed  Google Scholar 

  52. Eich HJ, Mach H, Werner C, Hesse S. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial. Clin Rehabil. 2004;18(6):640–51.

    Article  PubMed  Google Scholar 

  53. Salbach NM, Mayo NE, Robichaud-Ekstrand S, Hanley JA, Richards CL, Wood-Dauphinee S. The effect of a task-oriented walking intervention on improving balance self-efficacy poststroke: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(4):576–82.

    Article  PubMed  Google Scholar 

  54. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 1997;77(2):797–811.

    PubMed  CAS  Google Scholar 

  55. Harkema SJ. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist. 2001;7(5):455–68.

    Article  PubMed  CAS  Google Scholar 

  56. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83(5):683–91.

    Article  PubMed  Google Scholar 

  57. Sullivan KJ, Dobkin BH, Tavakol M, Davis B, Knowlton BJ, Harkema S. Post-stroke cortical plasticity induced by step training. Paper presented at: Society of Neuroscience2001, San Diego; 2001.

    Google Scholar 

  58. Miyai I, Suzuki M, Hatakenaka M, Kubota K. Effect of body weight support on cortical activation during gait in patients with stroke. Exp Brain Res. 2006;169(1):85–91.

    Article  PubMed  Google Scholar 

  59. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke. 2002;33(2):553–8.

    Article  PubMed  Google Scholar 

  60. Chen G, Patten C. Treadmill training with harness support: Selection of parameters for individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006;43(4):485–98.

    Article  PubMed  Google Scholar 

  61. Moore JL, Roth EJ, Killian C, Hornby TG. Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a “plateau” in recovery. Stroke. 2010;41(1):129–35.

    Article  PubMed  Google Scholar 

  62. Duncan PW, Sullivan KJ, Behrman AL, et al. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: a randomized controlled trial. BMC Neurol. 2007;7:39.

    Article  PubMed  Google Scholar 

  63. Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil. 2001;82(6):818–24.

    Article  PubMed  CAS  Google Scholar 

  64. Daly JJ, Kollar K, Debogorski AA, et al. Performance of an intramuscular electrode during functional neuromuscular stimulation for gait training post stroke. J Rehabil Res Dev. 2001;38(5):513–26.

    PubMed  CAS  Google Scholar 

  65. Nilsson L, Carlsson J, Danielsson A, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001;15(5):515–27.

    Article  PubMed  CAS  Google Scholar 

  66. Wernig A. Laufband (treadmill) therapy in SCI persons. Neurorehabil Neural Repair. 1999;13(3):175–6.

    Article  Google Scholar 

  67. Harris-Love ML, Forrester LW, Macko RF, Silver KH, Smith GV. Hemiparetic gait parameters in overground versus treadmill walking. Neurorehabil Neural Repair. 2001;15(2):105–12.

    Article  PubMed  CAS  Google Scholar 

  68. Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001;39(5):252–5.

    Article  PubMed  CAS  Google Scholar 

  69. Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002;33(12):2895–901.

    Article  PubMed  CAS  Google Scholar 

  70. de Leon RD, Kubasak MD, Phelps PE, et al. Using robotics to teach the spinal cord to walk. Brain Res Brain Res Rev. 2002;40(1–3):267–73.

    Article  PubMed  Google Scholar 

  71. Perry J. Gait analysis. New York: Slack; 1992.

    Google Scholar 

  72. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005(4):CD002840.

    Google Scholar 

  73. Morrison SA, Backus D. Locomotor training: is ­translating evidence into practice financially feasible? J Neurol Phys Ther. 2007;31(2):50–4.

    PubMed  Google Scholar 

  74. Siddiqi NA, Ide T, Chen MY, Akamatsu N. A computer-aided walking rehabilitation robot. Am J Phys Med Rehabil. 1994;73(3):212–6.

    Article  PubMed  CAS  Google Scholar 

  75. Hesse S, Uhlenbrock D, Werner C, Bardeleben A. A mechanized gait trainer for restoring gait in nonambulatory subjects. Arch Phys Med Rehabil. 2000;81(9):1158–61.

    Article  PubMed  CAS  Google Scholar 

  76. Khanna I, Roy A, Rodgers MM, Krebs HI, Macko RM, Forrester LW. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil. 2010;7:23.

    Article  PubMed  Google Scholar 

  77. Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.

    Article  PubMed  Google Scholar 

  78. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30.

    Article  PubMed  Google Scholar 

  79. Kawamura J, Ide T, Hayashi S, Ono H, Honda T. Automatic suspension device for gait training. Prosthet Orthot Int. 1993;17(2):120–5.

    PubMed  CAS  Google Scholar 

  80. van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H. The effects on Kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):360–70.

    Article  PubMed  Google Scholar 

  81. Hussein S, Schmidt H, Volkmar M, et al. Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1961–4.

    PubMed  CAS  Google Scholar 

  82. Horst RW. A bio-robotic leg orthosis for rehabilitation and mobility enhancement. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5030–3.

    PubMed  Google Scholar 

  83. HealthSouth’s AutoAmbulator(TM). http://www.healthsouth.com/experience-healthsouth/the-healthsouth-difference/leading-technology/autoambulator. Accessed 1 Nov 2011.

  84. Ferris DP, Sawicki GS, Daley MA. A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J HR. 2007;4(3):507–28.

    PubMed  Google Scholar 

  85. Ziegler MD, Zhong H, Roy RR, Edgerton VR. Why variability facilitates spinal learning. J Neurosci. 2010;30(32):10720–6.

    Article  PubMed  CAS  Google Scholar 

  86. Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55(1):322–34.

    Article  PubMed  Google Scholar 

  87. Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ. A computational framework to predict post-treatment outcome for gait-related disorders. Med Eng Phys. 2008;30(4):434–43.

    Article  PubMed  Google Scholar 

  88. Neckel N, Wisman W, Hidler J. Limb alignment and kinematics inside a Lokomat robotic orthosis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2698–701.

    PubMed  CAS  Google Scholar 

  89. Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;5:19.

    Article  PubMed  Google Scholar 

  90. Tong RK, Ng MF, Li LS. Effectiveness of gait training using an electromechanical gait trainer, with and without functional electric stimulation, in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2006;87(10):1298–304.

    Article  PubMed  Google Scholar 

  91. Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  92. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. a randomized controlled pilot study. Stroke. 2007;38(2):349–54.

    Article  PubMed  Google Scholar 

  93. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  94. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  95. Schwartz I, Sajin A, Fisher I, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R. 2009;1(6):516–23.

    Article  PubMed  Google Scholar 

  96. Lewek MD, Cruz TH, Moore JL, Roth HR, Dhaher YY, Hornby TG. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: a subgroup analysis from a randomized clinical trial. Phys Ther. 2009;89(8):829–39.

    Article  PubMed  Google Scholar 

  97. Werner C, Bardeleben A, Mauritz KH, Kirker S, Hesse S. Treadmill training with partial body weight support and physiotherapy in stroke patients: a ­preliminary comparison. Eur J Neurol. 2002;9(6):639–44.

    Article  PubMed  CAS  Google Scholar 

  98. Colombo G. The “Lokomat” – a driven ambulatory orthosis. Med Orth Tech. 2000;6:178–81.

    Google Scholar 

  99. World Health Organization. International classification of functioning, disability and health. Website, pdf file, 2001. www3.who.int/icf/icftemplate.cfm. Accessed 1 November, 2011.

  100. Adams SA, Pickering RM, Ashburn A, Lincoln NB. The scalability of the Rivermead Motor Assessment in nonacute stroke patients. Clin Rehabil. 1997;11(1):52–9.

    Article  PubMed  CAS  Google Scholar 

  101. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–10.

    PubMed  CAS  Google Scholar 

  102. Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000;29(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  103. Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984;64(1):35–40.

    PubMed  CAS  Google Scholar 

  104. Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on “rules of spinal locomotion” is effective in spinal cord injured persons. Eur J Neurosci. 1995;7(4):823–9.

    Article  PubMed  CAS  Google Scholar 

  105. Prosser L, Canby A. Further validation of the Elderly Mobility Scale for measurement of mobility of hospitalized elderly people. Clin Rehabil. 1997;11(4):338–43.

    Article  PubMed  CAS  Google Scholar 

  106. Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Int Disabil Stud. 1990;12(1):6–9.

    Article  PubMed  CAS  Google Scholar 

  107. Cameron D, Bohannon RW. Criterion validity of lower extremity Motricity Index scores. Clin Rehabil. 2000;14(2):208–11.

    PubMed  CAS  Google Scholar 

  108. Wade DT. Measurement in neurological rehabilitation. Oxford: Oxford University Press; 1992.

    Google Scholar 

  109. Mehrholz J, Werner C, Kugler J, Pohl M. Electrot­mechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2007(4):CD006185.

    Google Scholar 

  110. Sutherland DH, Olshen RA, Biden EN, Wyatt MP. The development of mature walking. Philidelphia: Blackwell Scientific Press; 1988.

    Google Scholar 

  111. Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther. 2002;82(7):707–15.

    PubMed  Google Scholar 

  112. Patten C, Gonzalez-Rothi EJ, Little VL, Kautz SA. Invited commentary. Phys Ther. 2009;89(8):e7–8.

    Article  PubMed  Google Scholar 

  113. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39.

    Article  PubMed  Google Scholar 

  114. Moseley A. Treadmill training more effective than Bobath training in improving walking following stroke. Aust J Physiother. 2005;51(3):192.

    Article  PubMed  Google Scholar 

  115. Duncan PW, Sullivan KJ, Behrman AL, et al. Body-weight-supported treadmill rehabilitation after stroke. The New England journal of medicine 2011;364:2026-36.

    Google Scholar 

  116. van Hedel HJ, Tomatis L, Muller R. Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture. 2006;24(1):35–45.

    Article  PubMed  Google Scholar 

  117. den Otter AR, Geurts AC, Mulder T, Duysens J. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004;19(3):270–8.

    Article  Google Scholar 

  118. Kautz SA, Duncan PW, Perera S, Neptune RR, Studenski SA. Coordination of hemiparetic locomotion after stroke rehabilitation. Neurorehabil Neural Repair. 2005;19(3):250–8.

    Article  PubMed  Google Scholar 

  119. Bannatyne BA, Edgley SA, Hammar I, Jankowska E, Maxwell DJ. Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. Eur J Neurosci. 2003;18(8):2273–84.

    Article  PubMed  Google Scholar 

  120. Israel JF, Campbell DD, Kahn JH, Hornby TG. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Phys Ther. 2006;86(11):1466–78.

    Article  PubMed  Google Scholar 

  121. Mauritz KH. Gait training in hemiplegia. Eur J Neurol. 2002;9 Suppl 1:23–9; discussion 53–61.

    Article  PubMed  Google Scholar 

  122. Tilson JK, Sullivan KJ, Cen SY, et al. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. Phys Ther. 2010;90(2):196–208.

    Article  PubMed  Google Scholar 

  123. Fulk GD, Echternach JL. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J Neurol Phys Ther. 2008;32(1):8–13.

    PubMed  Google Scholar 

Download references

Acknowledgments

Work contributed in this chapter has been generously supported by the following funding sources: Department of Veterans Affairs Rehabilitation Research and Development Service (#B540231 - Merit Review – Patten; #F7238S - Research Career Scientist – Patten; and #B6793C - Brain Rehabilitation Research Center of Excellence – Gonzalez-Rothi); Canadian Institutes of Health Research (Westlake); Foundation for Physical Therapy (Little); National Institutes of Health (T32 HD043730–08 Neuromuscular Plasticity Training Grant – Vandenborne).

We thank the following individuals for their efforts leading to this contribution: George Chen, Ph.D.; Jennifer DeMarco; Jeffrey Fox; Elisa Gonzalez-Rothi, DPT; Jeffrey P. Jaramillo, PT, MS; Ilse Jonkers, Ph.D., PT; Katie Lynn Marcoux; Fayeza Mulligathawama, PT, MHS; Kristen Gangarossa Smith; Kasthuri Veeragnathan, PT, GCS; Kelly P. Westlake, Ph.D., PT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolynn Patten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Patten, C., Little, V.L., McGuirk, T.E. (2012). Robotics for Stroke Recovery. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics