Advertisement

Monotone Games for Cognitive Radio Systems

  • Gesualdo Scutari
  • Daniel P. Palomar
  • Francisco Facchinei
  • Jong-Shi Pang
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 417)

Abstract

Noncooperative game theory is a branch of game theory for the resolution of conflicts among interacting decision makers (called players), each behaving selfishly to optimize his own well-being. In this chapter, we present a mathematical treatment of (generalized) Nash equilibrium problems based on the variational inequality and complementarity approach, covering the topics of existence and uniqueness of an equilibrium, and the design of distributed algorithms using best-response iterations along with their convergence properties.We then apply the developed machinery to the distributed design of cognitive radio systems. The proposed equilibrium models and resulting algorithms differ in performance of the secondary users, level of protection of the primary users, computational effort and signaling among primary and secondary users, convergence analysis, and convergence speed; which makes them suitable for many different CR systems.

Keywords

Nash Equilibrium Variational Inequality Cognitive Radio Variational Solution Cognitive Radio System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman, E., Boulogne, T., Azouzi, R.E., Jimenez, T., Wynter, L.: A survey on networking games. Computers and Operations Research 33, 286–311 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aubin, J.P.: Mathematical Method for Game and Economic Theory. Dover Publications (2007)Google Scholar
  3. 3.
    Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press (1997)Google Scholar
  4. 4.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial Mathematics, SIAM (1987)Google Scholar
  5. 5.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, 2nd edn. Athena Scientific Press, Belmont (1989)MATHGoogle Scholar
  6. 6.
    Cendrillon, R., Huang, J., Chiang, M., Moonen, M.: Autonomous spectrum balancing for digital subscriber lines. IEEE Trans. Signal Processing 55(8), 4241–4257 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)MATHGoogle Scholar
  8. 8.
    Etkin, R., Parekh, A., Tse, D.: Spectrum sharing for unlicensed bands. IEEE J. Selected Areas in Communications 25(3), 517–528 (2007)CrossRefGoogle Scholar
  9. 9.
    Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Operations Research Letters 35, 159–164 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. A Quarterly Journal of Operations Research (4OR) 5(3), 173–210 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problem. Springer, New York (2003)Google Scholar
  12. 12.
    Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optimization Letters 4(3) (2010)Google Scholar
  13. 13.
    Facchinei, F., Pang, J.S.: Nash equilibria: The variational approach. In: Palomar, D.P., Eldar, Y.C. (eds.) Convex Optimization in Signal Processing and Communications, ch. 12, pp. 443–493. Cambridge University Press, London (2009)Google Scholar
  14. 14.
    Goldsmith, A., Jafar, S.A., Maric, I., Srinivasa, S.: Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proc. IEEE 97(5), 894–914 (2009)CrossRefGoogle Scholar
  15. 15.
    Haykin, S.: Cognitive radio: Brain-empowered wireless communications. IEEE J. Selected Areas in Communications 23(2), 201–220 (2005)CrossRefGoogle Scholar
  16. 16.
    Hong, M., Garcia, A.: Dynamic pricing of interference in cognitive radio networks. IEEE Trans. Signal Processing (2010) (submitted)Google Scholar
  17. 17.
    Huang, J., Palomar, D.P., Mandayam, N., Walrand, J., Wicker, S.B., Basar, T.: Special Issue on Game Theory in Communication Systems. IEEE J. Selected Areas in Communications 26(7) (2008)Google Scholar
  18. 18.
    Jorswieck, E.A., Larsson, E.G., Luise, M., Poor, H.V.: Special Issue on Game Theory in Signal Proc. and Comm. IEEE Signal Processing Magazine 26(5) (2009)Google Scholar
  19. 19.
    Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier B.V., Amsterdam (2007)MATHGoogle Scholar
  20. 20.
    Luo, Z.Q., Pang, J.S.: Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines. EURASIP J. Applied Signal Processing 2006, 1–10 (2006)CrossRefGoogle Scholar
  21. 21.
    Mitola, J.: Cognitive radio for flexible mobile multimedia communication. In: Proc. IEEE 1999 Int. Workshop on Mobile Multimedia Communications (MoMuC 1999), San Diego, CA, pp. 3–10 (1999)Google Scholar
  22. 22.
    Nash, J.: Equilibrium points in n-person game. National Academy of Science 36, 48–49 (1950)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi- agent systems. Proc. IEEE 95(1), 215–223 (2007)CrossRefGoogle Scholar
  24. 24.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Society for Industrial Mathematics (SIAM), Philadelphia (1987)Google Scholar
  25. 25.
    Pang, J.S., Chan, D.: Iterative methods for variational and complementarity problems. Mathematical Programming 24(1), 284–313 (1982)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pang, J.S., Scutari, G., Palomar, D.P., Facchinei, F.: Design of cognitive radio systems under temperature-interference constraints: A variational inequality approach. IEEE Trans. Signal Processing 58(6), 3251–3271 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pang, J.S.: Asymmetric variational inequality problems over product sets: Applications and iterative methods. Mathematical Programming 31(2), 206–219 (1985)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Pang, J.S., Scutari, G., Facchinei, F., Wang, C.: Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Trans. Information Theory 54(8), 3471–3489 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rosen, J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Scutari, G., Barbarossa, S., Pescosolido, L.: Distributed decision through self-synchronizing sensor networks in the presence of propagation delays and asymmetric channels. IEEE Trans. Signal Processing 56(4), 1667–1684 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Scutari, G., Palomar, D.P.: MIMO cognitive radio: A game theoretical approach. IEEE Trans. Signal Processing 58(2), 761–780 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Scutari, G., Palomar, D.P., Barbarossa, S.: Asynchronous iterative water-filling for Gaussian frequency-selective interference channels. IEEE Trans. Information Theory 54(7), 2868–2878 (2008)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Scutari, G., Palomar, D.P., Barbarossa, S.: Competitive design of multiuser MIMO systems based on game theory: A unified view. IEEE J. Selected Areas in Communications 26(7), 1089–1103 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Scutari, G., Palomar, D.P., Barbarossa, S.: Optimal linear precoding strategies for wideband noncooperative systems based on game theory—Part I & II: Nash equilibria & Algorithms. IEEE Trans. Signal Processing 56(3), 1230–1249 & 1250–1267 (2008)Google Scholar
  35. 35.
    Scutari, G., Palomar, D.P., Barbarossa, S.: Competitive optimization of cognitive radio MIMO systems via game theory. In: Palomar, D.P., Eldar, Y.C. (eds.) Convex Optimization in Signal Processing and Communications, ch. 11, pp. 387–442. Cambridge University Press, London (2009)Google Scholar
  36. 36.
    Scutari, G., Palomar, D.P., Barbarossa, S.: The MIMO iterative waterfilling algorithm. IEEE Trans. Signal Processing 57(5), 1917–1935 (2009)CrossRefGoogle Scholar
  37. 37.
    Scutari, G., Palomar, D.P., Facchinei, F., Pang, J.S.: Convex optimization, game theory, and variational inequality theory in multiuser communication systems. IEEE Signal Processing Magazine 27(4), 35–49 (2010)CrossRefGoogle Scholar
  38. 38.
    Scutari, G., Facchinei, F., Pang, J.S., Palomar, D.P.: Monotone communication games: Theory, algorithms, and models. IEEE Trans. Information Theory (2010) (submitted) Google Scholar
  39. 39.
    Yin, H., Shanbhag, U.V., Mehta, P.G.: Nash equilibrium problems with congestion costs and shared constraints. IEEE Trans. Automatic Control 56(7), 1702–1708 (2010)CrossRefGoogle Scholar
  40. 40.
    Yu, W., Ginis, G., Cioffi, J.M.: Distributed multiuser power control for digital subscriber lines. IEEE J. Selected Areas in Communications 20(5), 1105–1115 (2002)CrossRefGoogle Scholar

Copyright information

© Springer London 2012

Authors and Affiliations

  • Gesualdo Scutari
    • 1
  • Daniel P. Palomar
    • 2
  • Francisco Facchinei
    • 3
  • Jong-Shi Pang
    • 4
  1. 1.Department of Electrical EngineeringState University of New York (SUNY) at BuffaloBuffaloUSA
  2. 2.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyKowloonHong Kong
  3. 3.Dipartimento di Informatica e SistemisticaUniversity of Rome La SapienzaRomeItaly
  4. 4.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations