Skip to main content

A Distributed NMPC Scheme without Stabilizing Terminal Constraints

  • Chapter
Distributed Decision Making and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 417))

Abstract

We consider a distributed NMPC scheme in which the individual systems are coupled via state constraints. In order to avoid violation of the constraints, the subsystems communicate their individual predictions to the other subsystems once in each sampling period. For this setting, Richards and How have proposed a sequential distributed MPC formulation with stabilizing terminal constraints. In this chapter we show how this scheme can be extended to MPC without stabilizing terminal constraints or costs.We show theoretically and by means of numerical simulations that under a suitable controllability condition stability and feasibility can be ensured even for rather short prediction horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AltmĂ¼ller, N., GrĂ¼ne, L., Worthmann, K.: Performance of NMPC schemes without stabilizing terminal constraints. In: Diehl, M., et al. (eds.) Recent Advances in Optimization and Its Applications in Engineering, pp. 289–298. Springer, London (2010)

    Chapter  Google Scholar 

  2. AltmĂ¼ller, N., Griine, L., Worthmann, K.: Receding horizon optimal control for the wave equation. In: Proc. 49th IEEE Conf. Decision and Control (CDC 2010), Atlanta, GA, pp. 3427–3432 (2010)

    Google Scholar 

  3. Dashkovskiy, S., RĂ¼ffer, B.S., Wirth, F.R.: An ISS small gain theorem for general networks. Math. Control Signals Systems 19(2), 93–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Giselsson, P., Rantzer, A.: Distribited model predictive control with siboptimality and stability giarantees. In: Proc. 49th IEEE Conference on Decision and Control (CDC 2010), Atlanta, GA, pp. 7272–7277 (2010)

    Google Scholar 

  5. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: For want of a local control Lyapunov finction, all is not lost. IEEE Trans. Automatic Control, 546–558 (2005)

    Google Scholar 

  6. GrĂ¼ne, L., Pannek, J.: Nonlinear Model Predictive Control. Theory and Algorithms. Springer, London (2011)

    Book  MATH  Google Scholar 

  7. GrĂ¼ne, L., Pannek, J., Seehafer, M., Worthmann, K.: Analysis of iinconstrained nonlinear MPC schemes with varying control horizon. SIAM J. Control Optimization 48, 4938–4962 (2010)

    Article  MATH  Google Scholar 

  8. GrĂ¼ne, L.: Analysis and design of iinconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optimization 48, 1206–1228 (2009)

    Article  MATH  Google Scholar 

  9. Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Aromatic Control 50(5), 674–678 (2005)

    Article  MathSciNet  Google Scholar 

  10. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Primbs, J., Nevistić, V.: Feasibility and stability of constrained finite receding horizon control. Automatica 36(7), 965–971 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob Hill Pib- lishing, Madison (2009)

    Google Scholar 

  13. Richards, A., How, J.P.: Robust distributed model predictive control. Int. J. Control 80(9), 1517–1531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Richards, A., How, J.P.: A decentralized algorithm for robist constrained model predictive control. In: Proc. American Control Conf. (ACC 2004), Boston, MA, pp. 4261–4266 (2004)

    Google Scholar 

  15. Scattolini, R.: Architectires for distribited and hierarchical model predictive control—A review. J. Process Control 19(5), 723–731 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this chapter

Cite this chapter

GrĂ¼ne, L., Worthmann, K. (2012). A Distributed NMPC Scheme without Stabilizing Terminal Constraints. In: Johansson, R., Rantzer, A. (eds) Distributed Decision Making and Control. Lecture Notes in Control and Information Sciences, vol 417. Springer, London. https://doi.org/10.1007/978-1-4471-2265-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2265-4_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2264-7

  • Online ISBN: 978-1-4471-2265-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics