Skip to main content

Transverse Linearization for Underactuated Nonholonomic Mechanical Systems with Application to Orbital Stabilization

  • Chapter
Distributed Decision Making and Control

Abstract

We consider a class of mechanical systems with an arbitrary number of passive (nonactuated) degrees of freedom, which are subject to a set of nonholonomic constraints. We assume that the challenging problem of motion planning is solved giving rise to a feasible desired periodic trajectory. Our goal is either to analyze orbital stability of this trajectory with a given time-independent feedback control law or to design a stabilizing controller. We extend our previous work done for mechanical systems without nonholonomic constraints. The main contribution is an analytical method for computing coefficients of a linear reduced-order control system, solutions of which approximate dynamics that is transversal to the preplanned trajectory. This linear system is shown to be useful for stability analysis and for design of feedback controllers orbitally, exponentially stabilizing forced periodic motions in nonholonomic mechanical systems.We illustrate our approach on a standard benchmark example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, vol. 3. Springer, Berlin (1988)

    Google Scholar 

  2. Banaszuk, A., Hauser, J.: Feedback linearization of transverse dynamics for periodic orbits. Systems and Control Letters 26, 95–105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, A., Baillieul, J., Crouch, P., Marsden, J.: Nonholonomic Mechanics and Control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  4. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automatic Control 37(11), 1746–1757 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freidovich, L., Shiriaev, A., Manchester, I.: Stability analysis and control design for an un-deractuated walking robot via computation of a transverse linearization. In: Proc. 17th IFAC World Congress, Seoul, Korea, pp. 10,166–10,171 (2008)

    Google Scholar 

  6. Freidovich, L., Shiriaev, A.: Transverse linearization for mechanical systems with passive links, impulse effects, and friction forces. In: Proc. 48th IEEE Conf. Decision and Control (CDC 2009) / the 28th Chinese Control Conference, Shanghai, China, pp. 6490–6495 (2009)

    Google Scholar 

  7. Freidovich, L.B., Robertsson, A., Shiriaev, A.S., Johansson, R.: Periodic motions of the Pen-dubot via virtual holonomic constraints: Theory and experiments. Automatica 44(3), 785–791 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hale, J.: Ordinary Differential Equations, Krieger, Malabar (1980)

    Google Scholar 

  9. Hussein, I.I., Bloch, A.M.: Optimal control of underactuated nonholonomic mechanical systems. IEEE Trans. Automatic Control 53(3), 668–682 (2008)

    Article  MathSciNet  Google Scholar 

  10. Leonov, G.: Generalization of the Andronov-Vitt theorem. Regular and Chaotic Dynamics 11(2), 281–289 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Neimark, J.I., Fufaev, F.A.: Dynamics of Nonholonomic Systems. A.M.S. Translations of Mathematical Monographs, vol. 33, Providence, RI (1972)

    Google Scholar 

  12. Poincaré, H.: Oeuvres completes, vol. 11. Gauthier-Villars, Paris (1916-1954)

    Google Scholar 

  13. Shiriaev, A., Freidovich, L.: Computing a transverse linearization for mechanical systems with two and more passive degrees of freedom. IEEE Trans. Automatic Control 54(12), 2882–2888 (2009)

    Article  MathSciNet  Google Scholar 

  14. Shiriaev, A., Freidovich, L., Gusev, S.: Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Automatic Control 55(4), 893–906 (2010)

    Article  MathSciNet  Google Scholar 

  15. Shiriaev, A., Freidovich, L., Manchester, I.: Can we make a robot ballerina perform a pirou-ette? Orbital stabilization of periodic motions of underactuated mechanical systems. Annual Reviews in Control 32(2), 200–211 (2008)

    Article  Google Scholar 

  16. Shiriaev, A., Perram, J., Canudas-de-Wit, C.: Constructive tool for orbital stabilization of un-deractuated nonlinear systems: Virtual constraints approach. IEEE Trans. Automatic Control 50(8), 1164–1176 (2005)

    Article  MathSciNet  Google Scholar 

  17. Shiriaev, A., Perram, J., Robertsson, A., Sandberg, A.: Periodic motion planning for virtually constrained Euler-Lagrange systems. Systems and Control Letters 55, 900–907 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Urabe, M.: Nonlinear Autonomous Oscillations. Academic Press, New York (1967)

    MATH  Google Scholar 

  19. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Taylor and Francis Group, Boca Raton, FL (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this chapter

Cite this chapter

Freidovich, L.B., Shiriaev, A.S. (2012). Transverse Linearization for Underactuated Nonholonomic Mechanical Systems with Application to Orbital Stabilization. In: Johansson, R., Rantzer, A. (eds) Distributed Decision Making and Control. Lecture Notes in Control and Information Sciences, vol 417. Springer, London. https://doi.org/10.1007/978-1-4471-2265-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2265-4_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2264-7

  • Online ISBN: 978-1-4471-2265-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics