Skip to main content

Paths in Cube-Curves

  • Chapter
Book cover Euclidean Shortest Paths
  • 1024 Accesses

Abstract

This chapter discusses a problem defined in a 3-dimensional regular grid. Such a grid is commonly used in 3D image analysis. We may also assume that a general 3D space (e.g., for a robot) is regularly subdivided into cubes of uniform size. The chapter considers shortest paths in such a cuboidal world.

When I was a Boy Scout, we played a game when new Scouts joined the troop. We lined up chairs in a pattern, creating an obstacle course through which the new Scouts, blindfolded, were supposed to manoeuvre. The Scoutmaster gave them a few moments to study the pattern before our adventure began. But as soon as the victims were blindfolded, the rest of us quietly removed the chairs.—I think life is like this game.

Pierce Vincent Eckhart

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Published by Reinhard Klette and Thomas Bülow in 2000; see [32].

  2. 2.

    Published between 2000 and 2002 in papers by Thomas Bülow and Reinhard Klette; see [11].

  3. 3.

    See, for example, [17], pages 595–601.

  4. 4.

    Note that we can classify a simple cube-curve in linear time to be first-class or not, by using the original rubberband algorithm: the curve is first-class iff option (O 2) does not occur at all.

  5. 5.

    See, for example, [12, page 49].

  6. 6.

    See [12, page 49].

  7. 7.

    Formulated as an open problem on [33, page 406].

  8. 8.

    This leads to two new open problems (smallest simple cube-curve without end-angle, and smallest simple cube-curve where none of the MLP vertices is a grid point). See Problem 9.7 at the end of this chapter. We consider that the second problem (i.e., all MLP vertices not at a grid point) is more difficult to solve.

  9. 9.

    Note that it is impossible that four consecutive vertices of ρ are identical.

  10. 10.

    Otherwise, we update e by removing a sufficiently small segment(s) from its endpoint. This is another way to handle the degenerate case (see Sect. 3.4) of the used RBA.

  11. 11.

    For Line 2, see Lemma 6 in [40].

  12. 12.

    Two digits are used only for displaying coordinates. Obviously, in the calculations it is necessary to use higher precision.

  13. 13.

    This “hardness” is described in [45], page 666, or in [46].

  14. 14.

    A proof can be based on a theorem by C. Bajaj [6] and the factorisation algorithm by E.R. Berlekamp [7]. Details are given further below. Chandrajit Bajaj is with the University of Texas. Elwyn R. Berlekamp is with the University of California at Berkeley.

  15. 15.

    Theorem by E. Galois; see also B.L. van der Waerden’s famous example p(x)=x 5x−1.

  16. 16.

    See Theorem 9 in [5], saying that the ESP problem is in general not solvable by radicals over the field of rationals.

  17. 17.

    The following results are well known in mathematical algebra; proofs can be found, for example, in [6, 24].

  18. 18.

    We follow [6]. However, this notion is not uniformly defined in literature; for a different use, see [62], for example.

  19. 19.

    Named after the Norwegian mathematician Niels Henrik Abel (1802–1829).

  20. 20.

    See, for example, [24] for more details. The following two lemmas are Theorems 5.7.1 and 5.7.2 in [24].

  21. 21.

    See, for example, [36].

  22. 22.

    See [36], page 441.

  23. 23.

    We used GAP, see [22].

  24. 24.

    For each a∈ℤ19, there exists a number j∈{0,1,…,18} such that 2jamod 19.

  25. 25.

    The DSS technique represents a digital curve, assumed to be a sequence of grid points, by subsequent digital straight segments (DSSs) of maximum length; the MLP technique considers a digital curve as a sequence of grid cells, calculating a minimum-length polygon (MLP) in the union of these cells.

  26. 26.

    Not to be confused with a 2D image segmentation algorithm of the same name [44].

References

  1. Amarunnishad, T.M., Das, P.P.: Estimation of length for digitized straight lines in three dimensions. Pattern Recognit. Lett. 11, 207–213 (1990)

    Article  MATH  Google Scholar 

  2. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1, 49–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, T., Kawamura, Y., Klette, R., Obokata, K.: Minimum-length polygons in approximation sausages. In: Proc. Int. Workshop Visual Form. LNCS, vol. 2059, pp. 103–112. Springer, Berlin (2004)

    Google Scholar 

  4. Bailey, D.: An efficient Euclidean distance transform. In: Proc. Int. Workshop Combinatorial Image Analysis. LNCS, vol. 3322, pp. 394–408. Springer, Berlin (2004)

    Chapter  Google Scholar 

  5. Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton Conf. Commum. Control Comput., pp. 510–517 (1985)

    Google Scholar 

  6. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3, 177–191 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)

    Article  MathSciNet  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, UK (2004)

    MATH  Google Scholar 

  9. Bülow, T., Klette, R.: Rubber band algorithm for estimating the length of digitized space-curves. In: Proc. Intern. Conf. Pattern Recognition, vol. 3, pp. 551–555 (2000)

    Google Scholar 

  10. Bülow, T., Klette, R.: Approximation of 3D shortest polygons in simple cube curves. In: Proc. Digital and Image Geometry. LNCS, vol. 2243, pp. 281–294. Springer, Berlin (2001)

    Google Scholar 

  11. Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24, 962–970 (2002)

    Article  Google Scholar 

  12. Burden, R.L., Faires, J.D.: Numerical Analysis, 7th edn. Brooks Cole, Pacific Grove (2000)

    Google Scholar 

  13. Chattopadhyay, S., Das, P.P.: Estimation of the original length of a straight line segment from its digitization in three dimensions. Pattern Recognit. 25, 787–798 (1992)

    Article  Google Scholar 

  14. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In: ACM Conf. Computational Geometry, pp. 41–48. ACM Press, New York (1994)

    Google Scholar 

  15. Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc. Annu. ACM Sympos. Computational Geometry, pp. 350–359 (1995)

    Google Scholar 

  16. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves In: Proc. Digital and Image Geometry. LNCS, vol. 2243, pp. 299–317. Springer, Berlin (2001)

    Chapter  Google Scholar 

  17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Comput. Vis. Graph. Image Process. 40, 311–333 (1987)

    Article  Google Scholar 

  19. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC, pp. 473–482 (2003)

    Google Scholar 

  20. Ellis, T.J., Proffitt, D., Rosen, D., Rutkowski, W.: Measurement of the lengths of digitized curved lines. Comput. Graph. Image Process. 10, 333–347 (1979)

    Article  Google Scholar 

  21. Ficarra, E., Benini, L., Macii, E., Zuccheri, G.: Automated DNA fragments recognition and sizing through AFM image processing. IEEE Trans. Inf. Technol. Biomed. 9, 508–517 (2005)

    Article  Google Scholar 

  22. GAP—Groups, Algorithms, Programming—a system for computational discrete algebra. www-gap.mcs.st-and.ac.uk/gap.html (2011). Accessed July 2011

  23. Ghosh, S.K., Mount, D.M.: An output sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20, 888–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Herstein, I.N.: Topics in Algebra, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  25. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS Pub. Co., Boston (1997)

    Google Scholar 

  26. Jonas, A., Kiryati, N.: Length estimation in 3-D using cube quantization. In: Proc. Vision Geometry. SPIE, vol. 2356, pp. 220–230 (1994)

    Google Scholar 

  27. Jonas, A., Kiryati, N.: Length estimation in 3-D using cube quantization. J. Math. Imaging Vis. 8, 215–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems with polygonal. In: Proc. Annu. ACM Sympos. on Computational Geometry, pp. 172–182 (1988)

    Google Scholar 

  29. Karavelas, M.I., Guibas, L.J.: Static and kinetic geometric spanners with applications. In: Proc. ACM–SIAM Symp. Discrete Algorithms, pp. 168–176 (2001)

    Google Scholar 

  30. Kiryati, N., Kubler, O.: On chain code probabilities and length estimators for digitized three-dimensional curves. Pattern Recognit. 28, 361–372 (1995)

    Article  Google Scholar 

  31. Kiryati, N., Szekely, G.: Estimating shortest paths and minimal distances on digitized three-dimensional surfaces. Pattern Recognit. 26, 1623–1637 (1993)

    Article  Google Scholar 

  32. Klette, R., Bülow, T.: Critical edges in simple cube-curves. In: Proc. Discrete Geometry Computational Imaging. LNCS, vol. 1953, pp. 467–478. Springer, Berlin (2000)

    Chapter  Google Scholar 

  33. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  34. Klette, R., Yip, B.: The length of digital curves. Mach. Graph. Vis. 9, 673–703 (2000)

    Google Scholar 

  35. Klette, R., Kovalevsky, V., Yip, B.: Length estimation of digital curves. In: Proc. Vision Geometry. SPIE, vol. 3811, pp. 117–129 (1999)

    Google Scholar 

  36. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley, Reading (1997)

    Google Scholar 

  37. Lee, D.T.: Proximity and reachability in the plane. Ph.D. thesis, University of Illinois at Urbana–Champaign, Urbana (1978)

    Google Scholar 

  38. Li, F., Klette, R.: Minimum-length polygon of a simple cube-curve in 3D space. In: Proc. Int. Workshop Combinatorial Image Analysis. LNCS, vol. 3322, pp. 502–511. Springer, Berlin (2004)

    Chapter  Google Scholar 

  39. Li, F., Klette, R.: The class of simple cube-curves whose MLPs cannot have vertices at grid points. In: Proc. Discrete Geometry Computational Imaging. LNCS, vol. 3429, pp. 183–194. Springer, Berlin (2005)

    Chapter  Google Scholar 

  40. Li, F., Klette, R.: Minimum-length polygons of first-class simple cube-curves. In: Proc. Computer Analysis Images Patterns. LNCS, vol. 3691, pp. 321–329. Springer, Berlin (2005)

    Chapter  Google Scholar 

  41. Li, F., Klette, R.: Shortest paths in a cuboidal world. In: Proc. Int. Workshop Combinatorial Image Analysis. LNCS, vol. 4040, pp. 415–429. Springer, Berlin (2006)

    Chapter  Google Scholar 

  42. Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vis. Comput. 25(10), 1588–1598 (2007)

    Article  Google Scholar 

  43. Li, F., Pan, X.: An approximation algorithm for computing minimum-length polygons in 3D images. In: Proc. The 10th Asian Conference on Computer Vision (ACCV 2010). LNCS, vol. 6495, pp. 641–652. Springer, Berlin (2011)

    Chapter  Google Scholar 

  44. Luo, H., Eleftheriadis, A.: Rubberband: an improved graph search algorithm for interactive object segmentation. In: Proc. Int. Conf. Image Processing, vol. 1, pp. 101–104 (2002)

    Chapter  Google Scholar 

  45. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  46. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. SCG, pp. 124–133 (2004)

    Google Scholar 

  47. Montanari, U.: A note on minimal length polygonal approximations to a digitalized contour. Commun. ACM 13, 41–47 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  48. Noakes, L., Kozera, R., Klette, R.: Length estimation for curves with different samplings. In: Digital and Image Geometry. LNCS, vol. 2243, pp. 334–346. Springer, Berlin (2001)

    Google Scholar 

  49. Overmars, M.H., Welzl, E.: New methods for constructing visibility graphs. In: Proc. Annu. ACM Sympos. on Computational Geometry, pp. 164–171 (1988)

    Google Scholar 

  50. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inf. Process. Lett. 20, 259–263 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. Roberts, A.W., Varberg, V.D.: Convex Functions. Academic Press, New York (1973)

    MATH  Google Scholar 

  52. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  53. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans. Syst. Man Cybern. 6, 637–647 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sloboda, F., Zaťko, B., Klette, R.: On the topology of grid continua. In: Proc. Vision Geometry. SPIE, vol. 3454, pp. 52–63 (1998)

    Google Scholar 

  56. Sloboda, F., Zaťko, B., Stoer, J.: On approximation of planar one-dimensional grid continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)

    Google Scholar 

  57. Sun, C., Pallottino, S.: Circular shortest path on regular grids. CMIS Report 01/76, CSIRO Math. Information Sciences, Australia (2001)

    Google Scholar 

  58. Sunday, D.: Algorithm 15: convex hull of a 2D simple polygonal path. www.softsurfer.com/Archive/algorithm_0203/ (2011). Accessed July 2011

  59. Talbot, M.: A dynamical programming solution for shortest path itineraries in robotics. Electr. J. Undergrad. Math. 9, 21–35 (2004)

    Google Scholar 

  60. Welzl, E.: Constructing the visibility graph for n line segments in \({\mathcal{O}}(n^{2})\) time. Inf. Process. Lett. 20, 167–171 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wolber, R., Stäb, F., Max, H., Wehmeyer, A., Hadshiew, I., Wenck, H., Rippke, F., Wittern, K.: Alpha-Glucosylrutin: Ein hochwirksams Flavonoid zum Schutz vor oxidativem Stress. J. Dtsch. Dermatol. Ges. 2, 580–587 (2004)

    Article  Google Scholar 

  62. Wolfram Mathworld. Good Prime. mathworld.wolfram.com/GoodPrime.html (2011). Accessed July 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajie Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, F., Klette, R. (2011). Paths in Cube-Curves. In: Euclidean Shortest Paths. Springer, London. https://doi.org/10.1007/978-1-4471-2256-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2256-2_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2255-5

  • Online ISBN: 978-1-4471-2256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics