Advertisement

Application Cases

  • Alfonso BañosEmail author
  • Antonio Barreiro
Part of the Advances in Industrial Control book series (AIC)

Abstract

Several practical applications of reset control systems will be developed in this chapter: a temperature control system of a heat exchanger, a bilateral teleoperation control system, and finally, a temperature control system of a solar collector field. The first two applications have been tested by means of experiments in plants, while the third has been tested by using a (well-proven) simulator of the field. The reset compensator used in all the cases is the PI + CI (see Chap.  5 for a detailed description). Note that although in principle the application processes are not all well-suited for PI + CI compensation, since they do not have integrators, and/or have dominant delays, it will be shown how the several improvements analyzed in Sect.  5.2 produce a satisfactory solution. The heat exchanger application and the solar collector field application are based on (Vidal et al. in 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA, 2008; Vidal and Baños in 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, France, 2008; Vidal et al. in 14th IEEE International Conference on Emerging Technologies and Factory Automation, Mallorca, Spain, 2009; Vidal and Baños in Chem. Eng. J. 159(1–3):170–181, 2010), and the teleoperation application is based on (Fernández et al. in 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA, 2008; Fernández et al. in IEEE Trans. Ind. Electron., 2010, doi: 10.1109/TIE.2010.2077610).

Keywords

Master Device Quantitative Feedback Theory Impedance Controller Slave Side Slave Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguilar, R., Martínez, S.A., Rodríguez, M.G., Soto, G.: Process analysis for treatment of industrial plating wastewater: simulation and control approach. Chem. Eng. J. 105, 139–145 (2005) CrossRefGoogle Scholar
  2. 2.
    Alpbaz, M., Karacan, S., Cabbar, Y., Hapoǧlu, H.: Application of model predictive control and dynamic analysis to a pilot distillation column and experimental verification. Chem. Eng. J. 88, 163–174 (2002) CrossRefGoogle Scholar
  3. 3.
    Altinten, A., Ketevanlioǧlu, F., Erdoǧan, S., Hapoǧlu, H., Alpbaz, M.: Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm. Chem. Eng. J. 138, 490–497 (2008) Google Scholar
  4. 4.
    Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arbaoui, M.A., Vernières-Hassimi, L., Seguin, D., Abdelghani-Idrissi, M.A.: Counter-current tubular heat exchanger: modeling and adaptive predictive functional control. Appl. Therm. Eng. 27, 2332–2338 (2007) CrossRefGoogle Scholar
  6. 6.
    Baños, A., Vidal, A.: Design of PI + CI reset compensators for second order plants. In: IEEE International Symposium on Industrial Electronics, Vigo, Spain (2007) Google Scholar
  7. 7.
    Baños, A., Vidal, A.: Definition and tuning of a PI + CI reset controller. In: Proceedings of the European Control Conference, Kos, Greece (2007) Google Scholar
  8. 8.
    Baños, A., Yaniv, O., Montoya, F.J.: Nonlinear QFT synthesis by local linearization. Int. J. Control 76(5), 429–436 (2003) zbMATHCrossRefGoogle Scholar
  9. 9.
    Baños, A., Garcia, P., Checa, L.: Robust control of thermal treatments in can industry. In: Proceedings of the 4th IFAC/CIGR Workshop—Control Applications in Post-Harvest and Processing Technology (CAPPT 2006), Potsdam, Germany (2006) Google Scholar
  10. 10.
    Berenguel, M., Camacho, E.F., Rubio, F.R.: Simulation software package for the ACUREX field. Internal Report, Departamento de Ingeniería y Automática, ESI Sevilla, Spain (1994) Google Scholar
  11. 11.
    Camacho, E.F., Berenguel, M., Rubio, F.R.: Advanced Control of Solar Plants. Springer, Berlin (1997) CrossRefGoogle Scholar
  12. 12.
    Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part I: Modeling and basic control approaches. Sol. Energy 81, 1240–1251 (2007) CrossRefGoogle Scholar
  13. 13.
    Camacho, E.F., Rubio, F.R., Berenguel, M., Valenzuela, L.: A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches. Sol. Energy 81, 1252–1272 (2007) CrossRefGoogle Scholar
  14. 14.
    Carrasco, J., Baños, A., van der Schaft, A.J.: A passivity-based approach to reset control systems stability. Syst. Control Lett. 59(1), 18–24 (2010) zbMATHCrossRefGoogle Scholar
  15. 15.
    Carrizales-Martínez, G., Fermat, R., González-Alvarez, V.: Temperature control via robust compensation of heat generation: Isoparaffin/olefin alkylation. Chem. Eng. J. 125, 89–98 (2006) CrossRefGoogle Scholar
  16. 16.
    Cervera, J.: Ajuste automático de controladores en QFT mediante estructuras fraccionales. Ph.D. Thesis, University of Murcia, Spain (2006) Google Scholar
  17. 17.
    Chopra, N., Spong, M.W., Ortega, R., Barabanov, N.E.: On tracking performance in bilateral teleoperation. IEEE Trans. Robot. 22(4), 861–866 (2006) CrossRefGoogle Scholar
  18. 18.
    Chopra, N., Berestesky, P., Spong, M.W.: Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Syst. Technol. 16(2), 304–313 (2008) CrossRefGoogle Scholar
  19. 19.
    Cirre, C.M., Moreno, J.C., Berenguel, M.: Robust QFT control of a solar collectors field. In: Martínez, D. (ed.) Improving Human Potential Programme—Research Results at PSA Within the Year 2002 Access Campaign. Serie Ponencias CIEMAT, pp. 27–33 (2003) Google Scholar
  20. 20.
    Fernández, A., Barreiro, A., Raimúndez, C.: Digital passive teleoperation of a gantry crane. In: Proc IEEE Int. Symp. Ind. Electron., Vigo, Spain (2007) Google Scholar
  21. 21.
    Fernández, A.F., Barreiro, A., Baños, A., Carrasco, J.: Reset control for passive teleoperation applications in process control. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA (2008) Google Scholar
  22. 22.
    Fernández, A.F., Barreiro, A., Baños, A., Carrasco, J.: Reset control for passive bilateral teleoperation. IEEE Trans. Ind. Electron. (2010). doi: 10.1109/TIE.2010.2077610 Google Scholar
  23. 23.
    Fischer, M., Nelles, O., Isermann, R.: Adaptive predictive control of a heat exchanger based on a fuzzy model. Control Eng. Pract. 6, 259–269 (1998) CrossRefGoogle Scholar
  24. 24.
    Hokayem, P., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Horowitz, I.M.: Quantitative Feedback Theory. QFT Press, Boulder (1992) Google Scholar
  26. 26.
    Hyodo, S., Soeda, Y., Ohnishi, K.: Verification of flexible actuator from position and force transfer characteristic and its application to bilateral teleoperation system. IEEE Trans. Ind. Electron. 56(1), 36–42 (2009) CrossRefGoogle Scholar
  27. 27.
    Karacan, S., Hapoǧlu, H., Alpbaz, M.: Application of optimal adaptive generalized predictive control to a packed distillation column. Chem. Eng. J. 84, 389–396 (2001) CrossRefGoogle Scholar
  28. 28.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002) zbMATHGoogle Scholar
  29. 29.
    Khan, S., Sabanovic, A., Nergiz, A.O.: Scaled bilateral teleoperation using discrete-time sliding-mode control. IEEE Trans. Ind. Electron. 56(9), 3609–3618 (2009) CrossRefGoogle Scholar
  30. 30.
    Landau, I.D.: System Identification and Control Design. Prentice Hall, New York (1990) zbMATHGoogle Scholar
  31. 31.
    Lee, Y., Park, S., Lee, M., Brosilow, C.: PID controller tuning for desired closed-loop responses for SI/SO systems. AIChE J. 44(1), 106–115 (2004) CrossRefGoogle Scholar
  32. 32.
    Loulch, Z., Cabassud, M., Le Lann, M.V.: A new strategy for temperature control of batch reactors: experimental application. Chem. Eng. J. 75, 11–20 (1999) CrossRefGoogle Scholar
  33. 33.
    Maidi, A., Diaf, M., Corriou, J.P.: Optimal linear PI fuzzy controller design of a heat exchanger. Chem. Eng. Process. 47, 938–945 (2008) CrossRefGoogle Scholar
  34. 34.
    Niemeyer, G., Slotine, J.-J.: Stable adaptive teleoperation. Int. J. Ocean Eng. 16(1), 152–162 (1991) CrossRefGoogle Scholar
  35. 35.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 252–265 (1986) CrossRefGoogle Scholar
  36. 36.
    Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13(4), 291–309 (2003) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Slama, T., Trevisani, A., Aubry, D., Oboe, R., Kratz, F.: Experimental analysis of an internet-based bilateral teleoperation system with motion and force scaling using a model predictive controller. IEEE Trans. Ind. Electron. 55(9), 3290–3299 (2008) CrossRefGoogle Scholar
  38. 38.
    Smith, C.L., Corripio, A.B., Martin, J.: Controller tuning from simple process models. Instrum. Technol. 22(12), 39–44 (1975) Google Scholar
  39. 39.
    van der Schaft, A.J.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer, London (2000) CrossRefGoogle Scholar
  40. 40.
    Vidal, A., Baños, A.: QFT-based design of PI + CI reset compensator: applications in process control. In: 16th IEEE Mediterranean Conference on Control and Automation, Ajaccio, France (2008) Google Scholar
  41. 41.
    Vidal, A., Baños, A.: Reset compensation for temperature control: experimental applications on heat exchangers. Chem. Eng. J. 159(1–3), 170–181 (2010) CrossRefGoogle Scholar
  42. 42.
    Vidal, A., Baños, A., Moreno, J.C., Berenguel, M.: PI + CI compensation with variable reset: application on solar collector fields. In: 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA (2008) Google Scholar
  43. 43.
    Vidal, A., Vidal, A., Baños, A.: Reset compensation applied on industrial heat exchangers. In: 14th IEEE International Conference on Emerging Technologies and Factory Automation, Mallorca, Spain (2009) Google Scholar
  44. 44.
    Wirz, R., Marin, R., Ferre, M., Barrio, J., Claver, J.M., Ortego, J.: Bidirectional transport protocol for teleoperated robots. IEEE Trans. Ind. Electron. 56(9), 3772–3781 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Fac. Informática, Depto. Informática y Sistemas, Grupo de Informática IndustrialUniversidad de MurciaMurciaSpain
  2. 2.Depto. Ingeniería de Sistemas y Automática, ETSIIUniversidad de VigoVigoSpain

Personalised recommendations