Variable-Order Fractional Signal Processing

Part of the Signals and Communication Technology book series (SCT)

Abstract

Chapter 6 introduces variable-order fractional signal processing techniques. The simulation of multifractional processes was realized by replacing the constant-order fractional integrator with a variable-order integrator. So, the generated multifractional processes exhibit the local memory property. Similarly, variable-order fractional system models were built by replacing the constant-order long memory parameter d with a variable-order local memory parameter d t . The variable-order fractional system models can characterize the local memory of the fractional processes. A physical experimental study of the temperature-dependent variable-order fractional integrator and differentiator was introduced at the end of this chapter. Some potential applications of the variable-order fractional integrator and differentiator are briefly discussed.

Keywords

Platinum Settling 

References

  1. 21.
    Beine, M., Laurent, S.: Structural change and long memory in volatility: new evidence from daily exchange rates. In: Econometric Society World Congress 2000 Contributed Papers 2013/10473, ULB—Universite Libre de Bruxelles (2000) Google Scholar
  2. 30.
    Boutahar, M., Dufrénot, G., Péguin-Feissolle, A.: A simple fractionally integrated model with a time-varying long memory parameter d t. Comput. Econ. 31(3), 225–241 (2008) MATHCrossRefGoogle Scholar
  3. 96.
    Fukami, T., Chen, R.-H.: Crystal structure and electrical conductivity of LiN2H5SO4 at high temperature. Jpn. J. Appl. Phys. 37(3A), 925–929 (1998) CrossRefGoogle Scholar
  4. 98.
    Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995) CrossRefGoogle Scholar
  5. 153.
    Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003) CrossRefGoogle Scholar
  6. 172.
    Lim, S.C.: Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type. J. Phys. A, Math. Gen. 34, 1301–1310 (2001) MATHCrossRefGoogle Scholar
  7. 210.
    Mukhopadhyay, S.: Fractional order modeling and control: development of analog strategies for plasma position control of the STOR-1M Tokamak. Master’s thesis, Utah State University, Logan, Utah, USA (2009) Google Scholar
  8. 235.
    Pesquet-Popescu, B., Pesquet, J.-C.: Synthesis of bidimensional α-stable models with long-range dependence. Signal Process. 82(12), 1927–1940 (2002) MATHCrossRefGoogle Scholar
  9. 240.
    Quanser: Heat flow experiment system identification and frequency domain design. Heat Flow Experiment System Manuals (2002). http://www.quanser.com/english/downloads/products/Heatflow.pdf
  10. 243.
    Ray, B.K., Tsay, R.S.: Bayesian methods for change-point detection in long-range dependent processes. J. Time Ser. Anal. 23(6), 687–705 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 274.
    Smit, W., de Vries, H.: Rheological models containing fractional derivatives. Rheol. Acta 9(4), 525–534 (1970) CrossRefGoogle Scholar
  12. 289.
    Sun, H.: Predictor-corrector method for variable-order, random-order fractional relaxation equation. MATLAB Central-File Exchange. http://www.mathworks.com/matlabcentral/fileexchange/26407 (2010)
  13. 290.
    Sun, H., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A, Stat. Mech. Appl. 388(21), 4586–4592 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringDalian Jiaotong UniversityDalianPeople’s Republic of China
  2. 2.Department of Electrical and Computer Engineering, CSOISUtah State UniversityLoganUSA
  3. 3.School of Electronic and Information EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations