Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Chapter 5 introduces the constant-order fractional signal processing techniques. The constant-order fractional signal processing techniques includes the simulation of constant-order fractional processes, constant-order fractional system modeling, fractional-order filter, and analogue realization of constant-order fractional systems. The relationship between constant-order fractional processes and constant-order fractional systems is investigated. Based on this relationship, the fractional Gaussian noise and fractional stable noise can both be simulated using the constant-order fractional integrator. In order to capture the long-range dependent property of the constant-order fractional processes, some constant-order fractional models, including FARIMA, FIGARCH and FARIMA with stable innovations were introduced. In addition, a fractional second-order filter G(s)=(s 2+as+b)γ and its asymptotic properties were studied. At the end of the chapter, the analogue realization of the constant-order fractional integrator and differentiator was provided to meet the needs of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.mathworks.com/matlabcentral/fileexchange/8312.

  2. 2.

    http://www.mathworks.com/matlabcentral/fileexchange/3673.

  3. 3.

    http://www.mathworks.com/matlabcentral/fileexchange/3514.

  4. 4.

    http://www.mathworks.com/matlabcentral/fileexchange/authors/9097.

References

  1. Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  2. Barbosa, R.S., Machado, J.A.T.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 3(4), 5–22 (2006)

    Google Scholar 

  3. Barnes, J.A., Allan, D.W.: A statistical model of flicker noise. Proc. IEEE 54(2), 176–178 (1996)

    Article  Google Scholar 

  4. Bohannan, G.W.: Analog realization of a fractional control element—revisited. In: IEEE CDC2002 Tutorial Workshop, Las Vegas, NE, USA (2002). http://mechatronics.ece.usu.edu/foc/cdc02tw/

    Google Scholar 

  5. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bollerslev, T., Mikkelsen, H.O.: Modeling and pricing long memory in stock market volatility. J. Econom. 73(1), 151–184 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  8. Charef, A.: Analogue realization of fractional-order integrator, differentiator and fractional PI λ D μ controller. In: IEE Proceedings-Control Theory and Applications, vol. 153, pp. 714–720 (2006)

    Google Scholar 

  9. Chen, Y.Q.: Low-pass IIR digital differentiator design. http://www.mathworks.com/matlabcentral/fileexchange/3517 (2003)

  10. Chen, Y.Q.: A new IIR-type digital fractional order differentiator. http://www.mathworks.com/matlabcentral/fileexchange/3518 (2003)

  11. Chen, Y.Q.: Impulse response invariant discretization of fractional order integrators or differentiators. http://www.mathworks.com/matlabcentral/fileexchange/21342 (2008)

  12. Chen, Y.Q.: Impulse response invariant discretization of fractional order low-pass filters. http://www.mathworks.com/matlabcentral/fileexchange/21365 (2008)

  13. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.Q., Sun, R., Zhou, A.: An improved Hurst parameter estimator based on fractional Fourier transform. Telecommun. Syst. 43(3–4), 197–206 (2010)

    Article  Google Scholar 

  15. Chen, Y.Q., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83(11), 2359–2365 (2003)

    Article  MATH  Google Scholar 

  16. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(16), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ewing, R.L., Abdel-Aty-Zohdy, H.S., Hollenbeck, M.C., Stevens, K.S.: Fractional-order signal processing using a polymer-electrolyte transistor. In: 51st Midwest Symposium on Circuits and Systems, MWSCAS 2008, Knoxville, USA, pp. 601–604 (2008)

    Chapter  Google Scholar 

  18. Ferdi, Y.: Impulse invariance-based method for the computation of fractional integral of order 0<α<1. Comput. Electr. Eng. 35(5), 722–729 (2009)

    Article  MATH  Google Scholar 

  19. Gray, H.L., Zhang, N.-F., Woodward, W.A.: On generalized fractional processes. J. Time Ser. Anal. 10(3), 233–257 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jesus, I.S., Machado, J.A.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1–2), 45–55 (2009)

    Article  MATH  Google Scholar 

  21. Kawaba, K., Nazri, W., Aun, H.K., Iwahashi, M., Kambayashi, N.: A realization of fractional power-law circuit using OTAs. In: The 1998 IEEE Asia-Pacific Conference on Circuits and Systems (IEEE APCCAS’98), Chiangmai, Thailand, pp. 249–252 (1998)

    Google Scholar 

  22. Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MATH  Google Scholar 

  23. Krishna, B.T., Reddy, K.V.V.S.: Active and passive realization of fractance device of order 1/2. Act. Passive Electron. Compon. (2008). doi:10.1155/2008/369421

    Google Scholar 

  24. Lahiri, A., Rawat, T.K.: Noise analysis of single stage fractional-order low-pass filter using stochastic and fractional calculus. ECTI Trans. Electr. Eng. Electron. Commun. 7(2), 136–143 (2009)

    Google Scholar 

  25. Li, M., Lim, S.C.: Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-a further study. Appl. Math. Model. 31(3), 625–631 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lim, S.C., Teo, L.P.: The fractional oscillator process with two indices. J. Phys. A, Math. Theor. 42(6) (2009)

    Google Scholar 

  27. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Machado, J.A.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2–3), 107–122 (1997)

    MATH  Google Scholar 

  29. Matos, C., Ortigueira, M.D.: Fractional filters: an optimization approach. In: Camarinha-Matos, L.M., Pereira, P., Ribeiro, L. (eds.) Emerging Trends in Technological Innovation, IFIP Advances in Information and Communication Technology. IFIP International Federation for Information Processing 2010, vol. 314, pp. 361–366. Springer, Berlin (2010)

    Chapter  Google Scholar 

  30. Monje, C.A., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional Order Systems and Control—Fundamentals and Applications (Advances in Industrial Control Series). Springer, Berlin (2010)

    Google Scholar 

  31. Ortigueira, M.D.: Introduction to fractional linear systems. Part 1: Continuous-time case. IEE Proc., Vis. Image Signal Process. 147(1), 62–70 (2000)

    Article  Google Scholar 

  32. Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. IEEE Trans. Circuits Syst. 28(10), 1007–1009 (1981)

    Article  Google Scholar 

  33. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  34. Parks, T.W., Burrus, C.S.: Digital Filter Design. Wiley, New York (1987)

    MATH  Google Scholar 

  35. Pesquet-Popescu, B., Pesquet, J.-C.: Synthesis of bidimensional α-stable models with long-range dependence. Signal Process. 82(12), 1927–1940 (2002)

    Article  MATH  Google Scholar 

  36. Podlubny, I., Petráš, I., Vinagre, B.M., O’Leary, P., Dorčák, L.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MATH  Google Scholar 

  37. Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I, Regul. Pap. 55(7), 2051–2063 (2008)

    Article  MathSciNet  Google Scholar 

  39. Radwan, A.G., Soliman, A.M., Elwakil, A.S.: Design equations for fractional-order sinusoidal oscillators: practical circuit examples. In: Proceedings of the International Conference on Microelectronics, pp. 89–92, December 2007

    Google Scholar 

  40. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, 1st edn. Chapman & Hall/CRC Press, London/Boca Raton (1994)

    MATH  Google Scholar 

  41. Signal Processing Toolbox 6.12: http://www.mathworks.com/products/signal

  42. Tseng, C.C.: Design of fractional order digital FIR differentiator. IEEE Signal Process. Lett. 8(3), 77–79 (2001)

    Article  Google Scholar 

  43. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vinagre, B.M., Petras, I., Merchan, P., Dorcak, L.: Two digital realization of fractional controllers: application to temperature control of a solid. In: Proceedings of the European Control Conference (ECC2001), Porto, Portugal, pp. 1764–1767 (2001)

    Google Scholar 

  45. Vinagre, B.M., Podlubny, I., Hernández, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Woodward, W.A., Cheng, Q.C., Gray, H.L.: A k-factor GARMA long-memory model. J. Time Ser. Anal. 19(4), 485–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xue, D., Atherton, D.P.: A suboptimal reduction algorithm for linear systems with a time delay. Int. J. Control 60(2), 181–196 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Sheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheng, H., Chen, Y., Qiu, T. (2012). Constant-Order Fractional Signal Processing. In: Fractional Processes and Fractional-Order Signal Processing. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2233-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2233-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2232-6

  • Online ISBN: 978-1-4471-2233-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics