Skip to main content

Constant-Order Fractional Processes

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Chapter 3 deals with the constant-order fractional processes and the Hurst parameter estimators evaluation. A fractional process with a constant long memory parameter can be regarded as the output signal of a fractional-order system driven by white Gaussian noise. Typical constant-order fractional processes including fractional Brownian motion, fractional Gaussian noise, fractional stable motion, and fractional stable noise. A constant-order fractional process can be characterized by its long memory parameter H, the Hurst parameter or Hurst exponent. In this chapter, long-range dependent processes and Hurst parameter estimators are introduced. Furthermore, the robustness and the accuracy of twelve Hurst parameter estimators are extensively studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardet, J.M., Lang, G., Oppenheim, G., Phillipe, A., Taqqu, M.S.: Generators of long-range dependent processes: a survey. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long-Range Dependence, pp. 579–623 (2003)

    Google Scholar 

  3. Beran, J.: Statistics for Long-Memory Processes, 1st edn. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  4. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  5. Cambanis, S., Maejima, M., Samorodnitsky, G.: Characterization of linear and harmonizable fractional stable motions. Stoch. Process. Appl. 42, 91–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C.: Hurst parameter estimate. http://www.mathworks.com/matlabcentral/fileexchange/19148 (Mar 2008)

  7. Clegg, R.G.: A practical guide to measuring the Hurst parameter. Int. J. Simul. Syst. Sci. Technol. 7(2), 3–14 (2006)

    MathSciNet  Google Scholar 

  8. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grigolini, P., Palatella, L., Raffaelli, G.: Asymmetric anomalous diffusion: an efficient way to detect memory in time series. Fractals 9(4), 439–449 (2001)

    Article  Google Scholar 

  10. Gubner, J.A.: Probability and Random Processes for Electrical and Computer Engineers, 1st edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  11. Hassler, U.: Regression of spectral estimators with fractionally integrated time series. J. Time Ser. Anal. 14(4), 369–380 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D, Nonlinear Phenom. 31(2), 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Z., Li, C.: On fractional stable processes and sheets: White noise approach. J. Math. Anal. Appl. 325(1), 624–635 (2006)

    Article  Google Scholar 

  14. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116(3), 770–799 (1951)

    Google Scholar 

  15. Jach, A., Kokoszka, P.: Robust wavelet-domain estimation of the fractional difference parameter in heavy-tailed time series: an empirical study. Methodol. Comput. Appl. Probab. 12(1), 177–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Navarro, R. Jr., Tamangan, R., Guba-Natan, N., Ramos, E., Guzman, A.D.: The identification of long memory process in the Asean-4 stock markets by fractional and multifractional Brownian motion. Philipp. Stat. 55(1–2), 65–83 (2006)

    Google Scholar 

  17. Kettani, H., Gubner, J.A.: A novel approach to the estimation of the long-range dependence parameter. IEEE Trans. Circuits Syst. 53(6), 463–467 (2006)

    Article  Google Scholar 

  18. Kono, N., Maejima, M.: Self-similar stable processes with stationary increments. In: Cambanis, S., Samorodnitsky, G., Taqqu, M. (eds.) Stable Processes and Related Topics, 1st edn., pp. 275–295. Birkhauser, Boston (1991)

    Google Scholar 

  19. Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)

    Article  Google Scholar 

  20. Li, M., Lim, S.C.: A rigorous derivation of power spectrum of fractional Gaussian noise. Fluct. Noise Lett. 6(4), C33–C36 (2006)

    Article  MathSciNet  Google Scholar 

  21. Li, M., Lim, S.C.: Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space-a further study. Appl. Math. Model. 31(3), 625–631 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Manderlbrot, B.B., Wallis, J.R.: Computer experiments with fractional Gaussian noises. Water Resour. Res. 5(1), 228–267 (1969)

    Article  Google Scholar 

  23. Middleton, D.: Statistical-physical models of man-made and natural radio noise, part II. Report 76-86, Institute for Telecommunication Sciences (April 1976)

    Google Scholar 

  24. Ortigueira, M.D., aes Batista, A.G.: On the relation between the fractional Brownian motion and the fractional derivatives. Phys. Lett. A 372(7), 958–968 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  26. Rea, W., Oxley, L., Reale, M., Brown, J.: Estimators for long range dependence: an empirical study. Electron. J. Stat. 3, 785–798 (2009)

    Google Scholar 

  27. Rose, O.: Estimation of the Hurst parameter of long-range dependent time series. Technical report, University of Würzburg Institute of Computer Science (1996)

    Google Scholar 

  28. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, 1st edn. Chapman & Hall/CRC Press, London/Boca Raton (1994)

    MATH  Google Scholar 

  29. Stoev, S.: Simulates fractional Gaussian noise (FGN) by using the FFT—fftfgn. http://www.mathworks.com/matlabcentral/fileexchange/5702 (2004)

  30. Stoev, S., Taqqu, M.S.: Simulation methods for linear fractional stable motion and FARIMA using the fast Fourier transform. Fractals 12(1), 95–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, R., Chen, Y.Q., Li, Q.: The modeling and prediction of Great Salt Lake elevation time series based on ARFIMA. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas (2007)

    Google Scholar 

  32. Taqqu, M.S., Teverovsky, V.: Robustness of Whittle type estimators for time series with long-range dependence. Stoch. Models 13(4), 723–757 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 3(4), 785–788 (1995)

    Article  MATH  Google Scholar 

  34. Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite and infinite variance time series. In: Adler, R.J., Feldman, R.E., Taqqu, M.S.T. (eds.) A Practical Guide to Heavy Tails: Statistical Techniques and Applications, pp. 177–217 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Sheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheng, H., Chen, Y., Qiu, T. (2012). Constant-Order Fractional Processes. In: Fractional Processes and Fractional-Order Signal Processing. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2233-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2233-3_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2232-6

  • Online ISBN: 978-1-4471-2233-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics