Skip to main content

An Overview of Fractional Processes and Fractional-Order Signal Processing Techniques

  • Chapter
Fractional Processes and Fractional-Order Signal Processing

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Chapter 2 provides an overview of basic concepts of fractional processes and fractional-order signal processing techniques from the perspective of fractional signals and fractional-order systems. Based on the fractional calculus, fractional-order systems are classified into three categories: constant-order fractional systems, variable-order fractional systems, and distributed-order fractional systems. Fractional processes, which can be considered as outputs of the fractional-order systems, have significant and complex long-memory properties. In order to best understand the fractional-order systems and extract valuable information from the fractional-order signals, fractional-order signal processing techniques are put forward for different kinds of fractional signals. All discussions on fractional-order signal processing techniques are centered around fractional calculus, fractional Fourier transform and α-stable distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnes, J.A., Allan, D.W.: A statistical model of flicker noise. Proc. IEEE 54(2), 176–178 (1996)

    Article  Google Scholar 

  2. Beran, J.: Statistics for Long-Memory Processes, 1st edn. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  3. Blu, T., Unser, M.: The fractional spline wavelet transform: definition and implementation. In: Proceedings of the 25th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), Istanbul, Turkey, vol. I, pp. 512–515 (2000)

    Google Scholar 

  4. Bohannan, G.W.: Analog realization of a fractional control element—revisited. In: IEEE CDC2002 Tutorial Workshop, Las Vegas, NE, USA (2002). http://mechatronics.ece.usu.edu/foc/cdc02tw/

    Google Scholar 

  5. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14(9–10), 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  6. Boutahar, M., Dufrénot, G., Péguin-Feissolle, A.: A simple fractionally integrated model with a time-varying long memory parameter d t . Comput. Econ. 31(3), 225–241 (2008)

    Article  MATH  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  8. Brzeźniak, Z., Zabczyk, J.: Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal. 32(2), 153–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y.Q., Sun, R., Zhou, A.: An improved Hurst parameter estimator based on fractional Fourier transform. Telecommun. Syst. 43(3–4), 197–206 (2010)

    Article  Google Scholar 

  11. Chen, Y.Q., Vinagre, B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83(11), 2359–2365 (2003)

    Article  MATH  Google Scholar 

  12. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives—an expository review. Nonlinear Dyn. 38(16), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fama, E.F., Roll, R.: Parameter estimates for symmetric stable distributions. J. Am. Stat. Assoc. 66(334), 331–338 (1971)

    Article  MATH  Google Scholar 

  14. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gubner, J.A.: Probability and Random Processes for Electrical and Computer Engineers, 1st edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  16. Hayes, M.H.: Statistical Digital Signal Processing and Modeling, 1st edn. Wiley, New York (1996)

    Google Scholar 

  17. Huang, Z., Li, C.: On fractional stable processes and sheets: White noise approach. J. Math. Anal. Appl. 325(1), 624–635 (2006)

    Article  Google Scholar 

  18. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116(3), 770–799 (1951)

    Google Scholar 

  19. Kolmogorov, A.N.: Wienersche Spiralen und einige, andere interessante Kurven in Hilbertschen Raum. Dokl. Akad. Nauk SSSR 26, 115–118 (1940)

    Google Scholar 

  20. Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3–24 (2003)

    Article  Google Scholar 

  21. Li, M.: Fractal time series—a tutorial review. Math. Probl. Eng. (2010). doi:10.1155/2010/157264

    Google Scholar 

  22. Lim, S.C.: Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type. J. Phys. A, Math. Gen. 34, 1301–1310 (2001)

    Article  MATH  Google Scholar 

  23. Lohmann, A.W., Mendlovic, D., Zalevsky, Z.: Fractional Hilbert transform. Opt. Lett. 21(4), 281–283 (1996)

    Article  Google Scholar 

  24. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, X., Nikias, C.L.: Joint estimation of time delay an frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. Signal Process. 44(11), 2669–2687 (1996)

    Article  Google Scholar 

  27. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  28. McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat., Simul. Comput. 15(4), 1109–1136 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, S., Childers, D.: Probability and Random Processes: With Applications to Signal Processing and Communications, 2nd edn. Academic Press, San Diego (2004)

    MATH  Google Scholar 

  30. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications, 1st edn. Wiley-Interscience, New York (1995)

    Google Scholar 

  31. Ortigueira, M.D.: Introduction to fractional linear systems-Part 2. discrete-time case. IEE Proc., Vis. Image Signal Process. 147(1), 71–78 (2000)

    Article  Google Scholar 

  32. Ortigueira, M.D.: Introduction to fractional linear systems. Part 1: Continuous-time case. IEE Proc., Vis. Image Signal Process. 147(1), 62–70 (2000)

    Article  Google Scholar 

  33. Ortigueira, M.D.: A new symmetric fractional B-spline. Signal Process. 83(11), 2311–2318 (2003)

    Article  MATH  Google Scholar 

  34. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  35. Peltier, R.F., Vehe, J.L.: Multifractional Brownian motion: definition and preliminary results. Technical report 2645, Institut National de Recherche en Informatique et en Automatique (1995)

    Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  37. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, 1st edn. Chapman & Hall/CRC Press, London/Boca Raton (1994)

    MATH  Google Scholar 

  38. Schmidt, V.H., Drumheller, J.E.: Dielectric properties of Lithium Hydrazinium Sulfate. Phys. Rev. B, Solid State 4(2), 4582–4597 (1971)

    Google Scholar 

  39. Sheng, H., Sun, H., Chen, Y.Q., Qiu, T.: Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. (2011)

    Google Scholar 

  40. Taqqu, M.S., Teverovsky, V., Willinger, W.: Estimators for long-range dependence: an empirical study. Fractals 3(4), 785–788 (1995)

    Article  MATH  Google Scholar 

  41. Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Rev. 42(1), 43–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Sheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sheng, H., Chen, Y., Qiu, T. (2012). An Overview of Fractional Processes and Fractional-Order Signal Processing Techniques. In: Fractional Processes and Fractional-Order Signal Processing. Signals and Communication Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2233-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2233-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2232-6

  • Online ISBN: 978-1-4471-2233-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics