Skip to main content

Applications in System, Control, and Signal Processing

  • Chapter
Low Rank Approximation

Part of the book series: Communications and Control Engineering ((CCE))

  • 2334 Accesses

Abstract

In this chapter, applications of structured low rank approximation for

  1. 1.

    approximate realization,

  2. 2.

    model reduction,

  3. 3.

    linear prediction (also known as output only identification and sum-of-damped exponentials modeling),

  4. 4.

    harmonic retrieval,

  5. 5.

    errors-in-variables system identification,

  6. 6.

    output error system identification,

  7. 7.

    finite impulse response system identification (or, equivalently, deconvolution),

  8. 8.

    distance to uncontrollability, and

  9. 9.

    pole placement by a low-order controller,

are reviewed. The types of structure occurring in these applications are affine: (block) Hankel, Toeplitz, and Sylvester.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A linear time-invariant autonomous system is marginally stable if all its trajectories, except for the y=0 trajectory, are bounded and do not converge to zero.

References

  • Antoulas A (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Aoki M, Yue P (1970) On a priori error estimates of some identification methods. IEEE Trans Autom Control 15(5):541–548

    Article  MathSciNet  Google Scholar 

  • Bresler Y, Macovski A (1986) Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans Acoust Speech Signal Process 34:1081–1089

    Article  Google Scholar 

  • Cadzow J (1988) Signal enhancement—a composite property mapping algorithm. IEEE Trans Signal Process 36:49–62

    MATH  Google Scholar 

  • De Moor B (1993) Structured total least squares and L 2 approximation problems. Linear Algebra Appl 188–189:163–207

    Article  Google Scholar 

  • De Moor B (1994) Total least squares for affinely structured matrices and the noisy realization problem. IEEE Trans Signal Process 42(11):3104–3113

    Article  Google Scholar 

  • Fu H, Barlow J (2004) A regularized structured total least squares algorithm for high-resolution image reconstruction. Linear Algebra Appl 391(1):75–98

    Article  MathSciNet  MATH  Google Scholar 

  • Glover K (1984) All optimal Hankel-norm approximations of linear multivariable systems and their l ∞-error bounds. Int J Control 39(6):1115–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Golub G, Milanfar P, Varah J (1999) A stable numerical method for inverting shape from moments. SIAM J Sci Comput 21:1222–1243

    Article  MathSciNet  Google Scholar 

  • Gustafsson B, He C, Milanfar P, Putinar M (2000) Reconstructing planar domains from their moments. Inverse Probl 16:1053–1070

    Article  MathSciNet  MATH  Google Scholar 

  • Ho BL, Kalman RE (1966) Effective construction of linear state-variable models from input/output functions. Regelungstechnik 14(12):545–592

    MATH  Google Scholar 

  • Kalman RE, Falb PL, Arbib MA (1969) Topics in mathematical system theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Kukush A, Markovsky I, Van Huffel S (2005) Consistency of the structured total least squares estimator in a multivariate errors-in-variables model. J Stat Plan Inference 133(2):315–358

    Article  MATH  Google Scholar 

  • Kung S (1978) A new identification method and model reduction algorithm via singular value decomposition. In: Proc 12th asilomar conf circuits, systems, computers, Pacific Grove, pp 705–714

    Google Scholar 

  • Lemmerling P, De Moor B (2001) Misfit versus latency. Automatica 37:2057–2067

    Article  MATH  Google Scholar 

  • Lemmerling P, Mastronardi N, Van Huffel S (2003) Efficient implementation of a structured total least squares based speech compression method. Linear Algebra Appl 366:295–315

    Article  MathSciNet  MATH  Google Scholar 

  • Markovsky I (2008) Structured low-rank approximation and its applications. Automatica 44(4):891–909

    Article  MathSciNet  Google Scholar 

  • Markovsky I, Willems JC, Van Huffel S, Moor BD, Pintelon R (2005) Application of structured total least squares for system identification and model reduction. IEEE Trans Autom Control 50(10):1490–1500

    Article  Google Scholar 

  • Mastronardi N, Lemmerling P, Kalsi A, O’Leary D, Van Huffel S (2004) Implementation of the regularized structured total least squares algorithms for blind image deblurring. Linear Algebra Appl 391:203–221

    Article  MathSciNet  MATH  Google Scholar 

  • Mastronardi N, Lemmerling P, Van Huffel S (2005) Fast regularized structured total least squares algorithm for solving the basic deconvolution problem. Numer Linear Algebra Appl 12(2–3):201–209

    Article  MathSciNet  MATH  Google Scholar 

  • Milanfar P, Verghese G, Karl W, Willsky A (1995) Reconstructing polygons from moments with connections to array processing. IEEE Trans Signal Process 43:432–443

    Article  Google Scholar 

  • Moore B (1981) Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans Autom Control 26(1):17–31

    Article  MATH  Google Scholar 

  • Mühlich M, Mester R (1998) The role of total least squares in motion analysis. In: Burkhardt H (ed) Proc 5th European conf computer vision. Springer, Berlin, pp 305–321

    Google Scholar 

  • Ng M, Plemmons R, Pimentel F (2000) A new approach to constrained total least squares image restoration. Linear Algebra Appl 316(1–3):237–258

    Article  MathSciNet  MATH  Google Scholar 

  • Ng M, Koo J, Bose N (2002) Constrained total least squares computations for high resolution image reconstruction with multisensors. Int J Imaging Syst Technol 12:35–42

    Article  Google Scholar 

  • Paige CC (1981) Properties of numerical algorithms related to computing controllability. IEEE Trans Autom Control 26:130–138

    Article  MathSciNet  MATH  Google Scholar 

  • Pintelon R, Schoukens J (2001) System identification: a frequency domain approach. IEEE Press, Piscataway

    Book  Google Scholar 

  • Pintelon R, Guillaume P, Vandersteen G, Rolain Y (1998) Analyses, development, and applications of TLS algorithms in frequency domain system identification. SIAM J Matrix Anal Appl 19(4):983–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Pruessner A, O’Leary D (2003) Blind deconvolution using a regularized structured total least norm algorithm. SIAM J Matrix Anal Appl 24(4):1018–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Roorda B (1995) Algorithms for global total least squares modelling of finite multivariable time series. Automatica 31(3):391–404

    Article  MathSciNet  MATH  Google Scholar 

  • Roorda B, Heij C (1995) Global total least squares modeling of multivariate time series. IEEE Trans Autom Control 40(1):50–63

    Article  MathSciNet  MATH  Google Scholar 

  • Schuermans M, Lemmerling P, Lathauwer LD, Van Huffel S (2006) The use of total least squares data fitting in the shape from moments problem. Signal Process 86:1109–1115

    Article  MATH  Google Scholar 

  • Söderström T (2007) Errors-in-variables methods in system identification. Automatica 43:939–958

    Article  MATH  Google Scholar 

  • Younan N, Fan X (1998) Signal restoration via the regularized constrained total least squares. Signal Process 71:85–93

    Article  MATH  Google Scholar 

  • Zeiger H, McEwen A (1974) Approximate linear realizations of given dimension via Ho’s algorithm. IEEE Trans Autom Control 19:153

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Markovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Markovsky, I. (2012). Applications in System, Control, and Signal Processing. In: Low Rank Approximation. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-2227-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2227-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2226-5

  • Online ISBN: 978-1-4471-2227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics