Skip to main content

Part of the book series: Communications and Control Engineering ((CCE))

  • 2326 Accesses

Abstract

The classical paradigm for data modeling invariably assumes that an input/output partitioning of the data is a priori given. For linear models, this paradigm leads to computational problems of solving approximately overdetermined systems of linear equations. Examples of most simple data fitting problems, however, suggest that the a priori fixed input/output partitioning of the data may be inadequate: (1) the fitting criteria often depend implicitly on the choice of the input and output variables, which may be arbitrary, and (2) the resulting computational problems are ill-conditioned in certain cases. An alternative paradigm for data modeling, sometimes refered to as the behavioral paradigm, does not assume a priori fixed input/output partitioning of the data. The corresponding computational problems involve approximation of a matrix constructed from the data by another matrix of lower rank. The chapter proceeds with review of applications in systems and control, signal processing, computer algebra, chemometrics, psychometrics, machine learning, and computer vision that lead to low rank approximation problems. Finally, generic methods for solving low rank approximation problems are outlined.

The very art of mathematics is to say the same thing another way.

Unknown

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock R (1877) Note on the method of least squares. The Analyst 4:183–184

    Article  MATH  Google Scholar 

  • Adcock R (1878) A problem in least squares. The Analyst 5:53–54

    Article  Google Scholar 

  • Alter O, Golub GH (2006) Singular value decomposition of genome-scale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening. Proc Natl Acad Sci 103:11828–11833

    Article  Google Scholar 

  • Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Botting B (2004) Structured total least squares for approximate polynomial operations. Master’s thesis, School of Computer Science, University of Waterloo

    Google Scholar 

  • Buckheit J, Donoho D (1995) Wavelab and reproducible research. In: Wavelets and statistics. Springer, Berlin/New York

    Google Scholar 

  • Byers R (1988) A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J Sci Stat Comput 9(5):875–881

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll R, Ruppert D, Stefanski L (1995) Measurement error in nonlinear models. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Chandrasekaran S, Golub G, Gu M, Sayed A (1998) Parameter estimation in the presence of bounded data uncertainties. SIAM J Matrix Anal Appl 19:235–252

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng C, Van Ness JW (1999) Statistical regression with measurement error. Arnold, London

    MATH  Google Scholar 

  • Ding C, He X (2004) K-means clustering via principal component analysis. In: Proc int conf machine learning, pp 225–232

    Google Scholar 

  • Dominik C (2010) The org mode 7 reference manual. Network theory ltd, URL http://orgmode.org/

  • Eckart G, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1:211–218

    Article  MATH  Google Scholar 

  • El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J Matrix Anal Appl 18:1035–1064

    Article  MathSciNet  MATH  Google Scholar 

  • Fierro R, Jiang E (2005) Lanczos and the Riemannian SVD in information retrieval applications. Numer Linear Algebra Appl 12:355–372

    Article  MathSciNet  MATH  Google Scholar 

  • Gander W, Golub G, Strebel R (1994) Fitting of circles and ellipses: least squares solution. BIT 34:558–578

    Article  MathSciNet  MATH  Google Scholar 

  • Gleser L (1981) Estimation in a multivariate “errors in variables” regression model: large sample results. Ann Stat 9(1):24–44

    Article  MathSciNet  MATH  Google Scholar 

  • Graillat S (2006) A note on structured pseudospectra. J Comput Appl Math 191:68–76

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos P (1985) I want to be a mathematician: an automathography. Springer, Berlin

    Book  Google Scholar 

  • Higham N (1989) Matrix nearness problems and applications. In: Gover M, Barnett S (eds) Applications of matrix theory. Oxford University Press, Oxford, pp 1–27

    Google Scholar 

  • Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and the algebraic Riccati equation. Control Lett 8:105–113

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson J (2003) A user’s guide to principal components. Wiley, New York

    Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, Berlin

    MATH  Google Scholar 

  • Karmarkar N, Lakshman Y (1998) On approximate GCDs of univariate polynomials. J Symb Comput 26:653–666

    Article  MathSciNet  MATH  Google Scholar 

  • Kiers H (2002) Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Comput Stat Data Anal 41:157–170

    Article  MathSciNet  MATH  Google Scholar 

  • Kim H, Park H (2007) Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23:1495–1502

    Article  Google Scholar 

  • Knuth D (1984) Literate programming. Comput J 27(2):97–111

    MATH  Google Scholar 

  • Knuth D (1986) Computers & typesetting, Volume B: TeX: The program. Addison-Wesley, Reading

    Google Scholar 

  • Knuth D (1992) Literate programming. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Koopmans T (1937) Linear regression analysis of economic time series. DeErven F Bohn

    MATH  Google Scholar 

  • Kovacevic J (2007) How to encourage and publish reproducible research. In: Proc IEEE int conf acoustics, speech signal proc, pp 1273–1276

    Google Scholar 

  • Krim H, Viberg M (1996) Two decades of array signal processing research. IEEE Signal Process Mag 13:67–94

    Article  Google Scholar 

  • Kumaresan R, Tufts D (1983) Estimating the angles of arrival of multiple plane waves. IEEE Trans Aerosp Electron Syst 19(1):134–139

    Article  Google Scholar 

  • Ma Y, Soatto S, Kosecká J, Sastry S (2004) An invitation to 3-D vision. Interdisciplinary applied mathematics, vol 26. Springer, Berlin

    Book  MATH  Google Scholar 

  • Madansky A (1959) The fitting of straight lines when both variables are subject to error. J Am Stat Assoc 54:173–205

    Article  MathSciNet  MATH  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to points in space. Philos Mag 2:559–572

    Google Scholar 

  • Polderman J, Willems JC (1998) Introduction to mathematical systems theory. Springer, New York

    Book  Google Scholar 

  • Ramsey N (1994) Literate programming simplified. IEEE Softw 11:97–105

    Article  Google Scholar 

  • Rump S (2003) Structured perturbations, Part I: Normwise distances. SIAM J Matrix Anal Appl 25:1–30

    Article  MathSciNet  MATH  Google Scholar 

  • Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis. MIT Press, Cambridge, pp 327–352

    Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stewart GW (1993) On the early history of the singular value decomposition. SIAM Rev 35(4):551–566

    Article  MathSciNet  MATH  Google Scholar 

  • Tipping M, Bishop C (1999) Probabilistic principal component analysis. J R Stat Soc B 61(3):611–622

    Article  MathSciNet  MATH  Google Scholar 

  • Tomasi C, Kanade T (1993) Shape and motion from image streames: a factorization method. Proc Natl Acad Sci USA 90:9795–9802

    Article  Google Scholar 

  • Trefethen LN, Embree M (1999) Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press, Princeton

    Google Scholar 

  • Vichia M, Saporta G (2009) Clustering and disjoint principal component analysis. Comput Stat Data Anal 53:3194–3208

    Article  Google Scholar 

  • Wentzell P, Andrews D, Hamilton D, Faber K, Kowalski B (1997) Maximum likelihood principal component analysis. J Chemom 11:339–366

    Article  Google Scholar 

  • Willems JC (1986a) From time series to linear system—Part I. Finite dimensional linear time invariant systems. Automatica 22:561–580

    Article  MathSciNet  MATH  Google Scholar 

  • Willems JC (1986b) From time series to linear system—Part II. Exact modelling. Automatica 22:675–694

    Article  MathSciNet  MATH  Google Scholar 

  • Willems JC (1987) From time series to linear system—Part III. Approximate modelling. Automatica 23:87–115

    Article  MathSciNet  MATH  Google Scholar 

  • Willems JC (1989) Models for dynamics. Dyn Rep 2:171–269

    Article  MathSciNet  Google Scholar 

  • Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE Trans Autom Control 36(3):259–294

    Article  MathSciNet  MATH  Google Scholar 

  • Willems JC (2007) The behavioral approach to open and interconnected systems: modeling by tearing, zooming, and linking. IEEE Control Syst Mag 27:46–99

    Article  MathSciNet  Google Scholar 

  • York D (1966) Least squares fitting of a straight line. Can J Phys 44:1079–1086

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z (1997) Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis Comput 15(1):59–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Markovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Markovsky, I. (2012). Introduction. In: Low Rank Approximation. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-2227-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2227-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2226-5

  • Online ISBN: 978-1-4471-2227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics