Skip to main content

Representation Limits of Mean Value Engine Models

  • Chapter
Identification for Automotive Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 418))

Abstract

Mean Value Engine Models (MVEMs) have been widely used for internal combustion engine modelling with main application areas on the design and development of engine control systems. However, modellers must be aware of the limitations of these MVEMs which are associated to the simplification of the geometry and the time scale, and the partial consideration of the physical phenomena involved. This chapter analyses through several real-life examples the effects of some of the most important simplifications done in MVEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heywood, J.B.: Internal combustion engine fundamentals. Mcgraw-Hill, New York (1989)

    Google Scholar 

  2. Rakopoulos, C.D., Giakoumis, E.G.: Diesel engine transient operation: principles of operation and simulation analysis. Springer, Berlin (2009)

    Google Scholar 

  3. Rakopoulos, C.D., Giakoumis, E.G.: Review of thermodynamic diesel engine simulations under transient operating conditions. SAE Paper 2006-01-0884 (2006)

    Google Scholar 

  4. Tap, F.A., Angel, B.N.: Including detailed chemistry effects in industrial 3D engine simulations. In: International Conference on Diesel Engine, Lyon (2006)

    Google Scholar 

  5. Haworth, D.C.: A review of turbulent combustion modeling for multidimensional in-cylinder CFD. SAE Paper 2005-01-0993 (2005)

    Google Scholar 

  6. Eriksson, L., Wahlström, J., Klein, M.: Physical modeling of turbocharged engines and parameter identification. In: del Re, L., et al. (eds.) Automotive Model Predictive Control: Models, Methods and Applications, pp. 53–71. Springer, Berlin (2010)

    Chapter  Google Scholar 

  7. Karlsson, J., Fredriksson, J.: Cylinder-by-cylinder engine models Vs mean value engine models for use in powertrain control applications. SAE Paper 1999-01-0906 (1999)

    Google Scholar 

  8. Stobart, R.: Control oriented models for exhaust gas aftertreatment; a review and prospects. SAE paper 2003-01-1004 (2003)

    Google Scholar 

  9. Hirsch, M., Oppenauer, K., del Re, L.: Dynamic engines emission models. In: Automotive Model Predictive Control: Models, Methods and Applications, pp. 73–88. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Arregle, J., Lopez, J.J., Guardiola, C., Monin, C.: On board NOx prediction in diesel engines: a physical approach. In: del Re, L., et al. (eds.) Automotive Model Predictive Control: Models, Methods and Applications, pp. 25–36. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Zinner, K.: Supercharging of internal combustion engines. Springer, Berlin (1978)

    Google Scholar 

  12. Winterbone, D.E., Pearson, R.J.: Turbocharger turbine performance unsteady flow—a review of experimental results and proposed models. Inst. Mech. Eng. paper C554/031/98 (1998)

    Google Scholar 

  13. Macián, V., Luján, J.M., Bermúdez, V., Guardiola, C.: Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement. Measurement Science and Technology 15, 1185–1194 (2004)

    Article  Google Scholar 

  14. Chevalier, A., Müller, M., Hendricks, E.: On the validity of mean value engine models during transient operation. SAE paper 2000-01-1261 (2000)

    Google Scholar 

  15. Torregrosa, A.J., Galindo, J., Guardiola, C., Varnier, O.: A combined experimental and modelling methodology for intake line evaluation in turbocharged diesel engines. International Journal of Automotive Technology (2011)

    Google Scholar 

  16. Masoudi, M.: Hydrodynamics of diesel particulate filters. SAE Technical Paper 2002-01-1016 (2002)

    Google Scholar 

  17. Piqueras, P.: Contribución al modelado termofluidodinámico de filtros de partículas diesel de flujo de pared, PhD. Thesis (text in spanish), Universidad Politécnica de Valencia (2010)

    Google Scholar 

  18. OpenWAM website, CMT-Motores Térmicos (Universidad Politécnica de Valencia), www.openwam.org (Cited June 1, 2010)

  19. Konstandopoulos, A.G., Skaperdas, E., Warren, J., Allansson, R.: Optimized filter design and selection criteria for continuously regenerating diesel particulate traps. SAE Technical Paper 1999-01-0468 (1999)

    Google Scholar 

  20. Payri, F., Desantes, J.M., Galindo, J., Serrano, J.R.: Exhaust manifold of a supercharged reciprocating internal combustion engine (text in spanish), Patent application P200900482. Priority date 13/02/2009. Oficina Española de Patentes y Marcas (2009)

    Google Scholar 

  21. Windsor, R.E., Baumgard, K.J.: Internal combustion engine with dual particulate traps ahead of turbocharger. Patent Application Publication, US 2009/0151328 A1, United States (2009)

    Google Scholar 

  22. Payri, F., Luján, J.M., Climent, H., Pla, B.: Effects of the intake charge distribution in HSDI engines. SAE Paper 2010-01-1119 (2010)

    Google Scholar 

  23. Beatrice, C., Avolio, G., Bertoli, C., Del Giacomo, N., Guido, C., Migliaccio, M.: Critical aspects on the control in the low temperature combustion systems for high performance DI diesel engines. Oil & Gas Science and Technology 62, 471–482 (2007)

    Article  Google Scholar 

  24. Siewert, R.M., Krieger, R.B., Huebler, M.S., Baruah, P.C., Khalighi, B., Wesslau, M.: Modifying an Intake Manifold to Improve Cylinder-to-Cylinder EGR Distribution in a DI diesel Engine Using Combined CFD and Engine Experiments. SAE Paper 2001-01-3685 (2001)

    Google Scholar 

  25. Wehr, D., Huurdeman, B., Spennemann, A.: EGR- A challenge for modern plastic intake manifolds. SAE Paper 2002-01-0902 (2002)

    Google Scholar 

  26. Luján, J.M., Galindo, J., Serrano, J.R., Pla, B.: A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection diesel engines. Meas. Sci. Technol. 19, 1–11 (2008)

    Article  Google Scholar 

  27. Galindo, J., Serrano, J.R., Guardiola, C., Cervelló, C.: Surge limit definition in a specific test bench for the characterization of automotive turbochargers. Exp. Thermal Fluid Sci. 30, 485–496 (2006)

    Article  Google Scholar 

  28. Galindo, J., Serrano, J.R., Climent, H., Tiseira, A.: Experiments and modelling of surge in small centrifugal compressor for automotive engines. Exp. Thermal Fluid Sci. 32, 818–826 (2007)

    Article  Google Scholar 

  29. Kim, Y., Engeda, A., Aungier, R., Derinzi, G.: The influence of inlet flow distortion on the performance of the centrifugal compressor and development of an improved inlet using numerical simulations. Proc. of the Inst. Mech. Eng. Part A: J. of Power and Energy 215, 323–338 (2001)

    Article  Google Scholar 

  30. Galindo, J., Serrano, J.R., Arnau, F., Piqueras, P.: Description and analysis of a onedimensional gas-dynamic model with independent time discretization. J. Eng. Gas Turb. Power - Trans. ASME 131, 34504 (2009)

    Article  Google Scholar 

  31. Galindo, J., Climent, H., Guardiola, C., Tiseira, A.: On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines. Exp. Thermal Fluid Sci. 33, 1163–1171 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer London

About this chapter

Cite this chapter

Guardiola, C., Gil, A., Pla, B., Piqueras, P. (2012). Representation Limits of Mean Value Engine Models. In: Alberer, D., Hjalmarsson, H., del Re, L. (eds) Identification for Automotive Systems. Lecture Notes in Control and Information Sciences, vol 418. Springer, London. https://doi.org/10.1007/978-1-4471-2221-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2221-0_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2220-3

  • Online ISBN: 978-1-4471-2221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics