Skip to main content

The Molecular Biology of Diffuse Low-Grade Gliomas

  • Chapter
  • First Online:
  • 1273 Accesses

Abstract

The World Health Organization (WHO) grading scheme for glial neoplasms assigns grade II to three infiltrating (non-circumscribed) gliomas: diffuse astrocytomas, oligodendrogliomas, and oligoastrocytomas. Although commonly referred to collectively as among the “low-grade gliomas”, these three tumors represent molecularly and clinically unique entities. Each is the subject of active basic research aimed at developing a more complete understanding of its molecular biology, and the pace of such research continues to accelerate. Additionally, because prognostication and management of these tumors has historically proven challenging, translational research regarding grade II infiltrating gliomas continues in the hopes of identifying novel molecular features that can better inform diagnostic, prognostic, and therapeutic strategies. Unfortunately, the basic and translational literature regarding the molecular biology of WHO grade II infiltrating gliomas remains nebulous. Our goal for this chapter is to present a comprehensive discussion of current knowledge regarding the molecular characteristics of these three WHO grade II tumors on the chromosomal, genomic, and epigenomic levels. Additionally, we discuss the emerging evidence suggesting molecular differences between adult and pediatric low-grade, infiltrating gliomas. Finally, we present an overview of current strategies for using molecular data to classify low-grade, infiltrating gliomas into clinically relevant categories based on tumor biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Louis D, Ohgaki H, Wiestler O, Cavenee W, editors. WHO classification of tumors of the central nervous system. Lyon: IARC; 2007.

    Google Scholar 

  2. Schiff D, Brown PD, Giannini C. Outcome in adult low-grade glioma: the impact of prognostic factors and treatment. Neurology. 2007;69:1366–73.

    Article  PubMed  Google Scholar 

  3. Reifenberger G, Collins VP. Pathology and molecular genetics of astrocytic gliomas. J Mol Med. 2004;82:656–70.

    Article  PubMed  CAS  Google Scholar 

  4. (CBTRUS) CBTRotUS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007. 2011. Central Brain Tumor Registry of the United States, Hinsdale. 2011. Available at website: http://www.cbtrus.org/2011-NPCR-SEER/WEB-0407-Report-3-3-2011.pdf. Accessed 03 Mars 2011.

  5. Inoue R, Isono M, Abe M, Abe T, Kobayashi H. A genotype of the polymorphic DNA repair gene MGMT is associated with de novo glioblastoma. Neurol Res. 2003;25:875–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bethke L, Webb E, Murray A, Schoemaker M, Johansen C, Christensen HC, et al. Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Hum Mol Genet. 2008;17:800–5.

    Article  PubMed  CAS  Google Scholar 

  7. Barnett GH. High-grade gliomas: diagnosis and treatment. Totowa: Humana Press; 2007.

    Book  Google Scholar 

  8. Rees J, Wen P, editors. Neuro-oncology. Philadelphia: Elsevier; 2010.

    Google Scholar 

  9. Marko NF, Prayson RA, Barnett GH, Weil RJ. Integrated molecular analysis suggests a three-class model for low-grade gliomas: a proof-of-concept study. Genomics. 2010;95:16–24.

    Article  PubMed  CAS  Google Scholar 

  10. Marko NF, Toms SA, Barnett GH, Weil R. Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: a preliminary feasibility study. Genomics. 2008;91:395–406.

    Article  PubMed  CAS  Google Scholar 

  11. Schrock E, Blume C, Meffert MC, du Manoir S, Bersch W, Kiessling M, et al. Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. Genes Chromosomes Cancer. 1996;15:199–205.

    Article  PubMed  CAS  Google Scholar 

  12. Wessels PH, Twijnstra A, Kessels AG, Krijne-Kubat B, Theunissen PH, Ummelen MI, et al. Gain of chromosome 7, as detected by in situ hybridization, strongly correlates with shorter survival in astrocytoma grade 2. Genes Chromosomes Cancer. 2002;33:279–84.

    Article  PubMed  CAS  Google Scholar 

  13. Nishizaki T, Ozaki S, Harada K, Ito H, Arai H, Beppu T, et al. Investigation of genetic alterations associated with the grade of astrocytic tumor by comparative genomic hybridization. Genes Chromosomes Cancer. 1998;21:340–6.

    Article  PubMed  CAS  Google Scholar 

  14. von Deimling A, editor. Gliomas. Heidelberg: Springer; 2009.

    Google Scholar 

  15. Watanabe K, Peraud A, Gratas C, Wakai S, Kleihues P, Ohgaki H. p53 and PTEN gene mutations in gemistocytic astrocytomas. Acta Neuropathol. 1998;95:559–64.

    Article  PubMed  CAS  Google Scholar 

  16. Miyakawa A, Ichimura K, Schmidt EE, Varmeh-Ziaie S, Collins VP. Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br J Cancer. 2000;82:543–9.

    Article  PubMed  CAS  Google Scholar 

  17. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol. 1994;145:1175–90.

    PubMed  CAS  Google Scholar 

  18. Jeuken JW, von Deimling A, Wesseling P. Molecular pathogenesis of oligodendroglial tumors. J Neurooncol. 2004;70:161–81.

    Article  PubMed  Google Scholar 

  19. Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol. 2004;108:49–56.

    Article  PubMed  Google Scholar 

  20. Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62:111–26.

    PubMed  CAS  Google Scholar 

  21. von Deimling A, Louis DN, von Ammon K, Petersen I, Wiestler OD, Seizinger BR. Evidence for a tumor suppressor gene on chromosome 19q associated with human astrocytomas, oligodendrogliomas, and mixed gliomas. Cancer Res. 1992;52:4277–9.

    Google Scholar 

  22. Bello MJ, Vaquero J, de Campos JM, Kusak ME, Sarasa JL, Saez-Castresana J, et al. Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors. Int J Cancer. 1994;57:172–5.

    Article  PubMed  CAS  Google Scholar 

  23. Kraus JA, Koopmann J, Kaskel P, Maintz D, Brandner S, Schramm J, et al. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol. 1995;54:91–5.

    Article  PubMed  CAS  Google Scholar 

  24. Kanner AA, Staugaitis SM, Castilla EA, Chernova O, Prayson RA, Vogelbaum MA, et al. The impact of genotype on outcome in oligodendroglioma: validation of the loss of chromosome arm 1p as an important factor in clinical decision making. J Neurosurg. 2006;104:542–50.

    Article  PubMed  Google Scholar 

  25. Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65:988–94.

    Article  PubMed  Google Scholar 

  26. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66:9852–61.

    Article  PubMed  CAS  Google Scholar 

  27. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene. 1999;18:4144–52.

    Article  PubMed  CAS  Google Scholar 

  28. Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K, et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer. 2006;106:2218–23.

    Article  PubMed  CAS  Google Scholar 

  29. Maintz D, Fiedler K, Koopmann J, Rollbrocker B, Nechev S, Lenartz D, et al. Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol Exp Neurol. 1997;56:1098–104.

    Article  PubMed  CAS  Google Scholar 

  30. von Deimling A, Fimmers R, Schmidt MC, Bender B, Fassbender F, Nagel J, et al. Comprehensive allelotype and genetic analysis of 466 human nervous system tumors. J Neuropathol Exp Neurol. 2000;59:544–58.

    Google Scholar 

  31. Mueller W, Hartmann C, Hoffmann A, Lanksch W, Kiwit J, Tonn J, et al. Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol. 2002;161:313–9.

    Article  PubMed  CAS  Google Scholar 

  32. Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N, et al. Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res. 2002;8:196–201.

    PubMed  CAS  Google Scholar 

  33. Vogazianou AP, Chan R, Backlund LM, Pearson DM, Liu L, Langford CF, et al. Distinct patterns of 1p and 19q alterations identify subtypes of human gliomas that have different prognoses. Neuro Oncol. 2010;12:664–78.

    Article  PubMed  Google Scholar 

  34. Rossi MR, Gaile D, Laduca J, Matsui S, Conroy J, McQuaid D, et al. Identification of consistent novel submegabase deletions in low-grade oligodendrogliomas using array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2005;44:85–96.

    Article  PubMed  CAS  Google Scholar 

  35. Bogler O, Huang HJ, Kleihues P, Cavenee WK. The p53 gene and its role in human brain tumors. Glia. 1995;15:308–27.

    Article  PubMed  CAS  Google Scholar 

  36. Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100:2235–41.

    Article  PubMed  CAS  Google Scholar 

  37. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res. 2000;60:417–24.

    PubMed  CAS  Google Scholar 

  38. Rasheed BK, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, et al. Alterations of the TP53 gene in human gliomas. Cancer Res. 1994;54:1324–30.

    PubMed  CAS  Google Scholar 

  39. James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK. Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci USA. 1989;86:2858–62.

    Article  PubMed  CAS  Google Scholar 

  40. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    PubMed  CAS  Google Scholar 

  41. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature. 1992;355:846–7.

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol. 1996;6:217–23; discussion 223–14.

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res. 1997;3:523–30.

    PubMed  CAS  Google Scholar 

  45. von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res. 1992;52:2987–90.

    Google Scholar 

  46. Peraud A, Kreth FW, Wiestler OD, Kleihues P, Reulen HJ. Prognostic impact of TP53 mutations and P53 protein overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin Cancer Res. 2002;8:1117–24.

    PubMed  CAS  Google Scholar 

  47. Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem. 1999;274:30527–33.

    Article  PubMed  CAS  Google Scholar 

  48. RefSEQ. Isocitrate dehydrogenase. In: National Center for Biotechnology Information. 2008. www.ghr.nlm.nih.gov/gene/IDH1.

  49. Narahara K, Kimura S, Kikkawa K, Takahashi Y, Wakita Y, Kasai R, et al. Probable assignment of soluble isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet. 1985;71:37–40.

    Article  PubMed  CAS  Google Scholar 

  50. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  PubMed  CAS  Google Scholar 

  51. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  PubMed  CAS  Google Scholar 

  52. Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol. 2009;11:341–7.

    Article  PubMed  CAS  Google Scholar 

  53. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602.

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.

    Article  PubMed  CAS  Google Scholar 

  55. Gravendeel LA, Kloosterhof NK, Bralten LB, van Marion R, Dubbink HJ, Dinjens W, et al. Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat. 2010;31:E1186–99.

    Article  PubMed  CAS  Google Scholar 

  56. Zhao S, Guan KL. IDH1 mutant structures reveal a mechanism of dominant inhibition. Cell Res. 2010;20:1279–81.

    Article  PubMed  Google Scholar 

  57. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.

    Article  PubMed  CAS  Google Scholar 

  58. Pietrak B, Zhao H, Qi H, Quinn C, Gao E, Boyer JG, et al. A tale of two subunits: how the neom­orphic R132H IDH1 mutation enhances produc­tion of alphaHG. Biochemistry. 2011;50:4804–12.

    Article  PubMed  CAS  Google Scholar 

  59. Yang B, Zhong C, Peng Y, Lai Z, Ding J. Molecular mechanisms of “off-on switch” of activities of human IDH1 by tumor-associated mutation R132H. Cell Res. 2010;20:1188–200.

    Article  PubMed  CAS  Google Scholar 

  60. Zhu J, Zuo J, Xu Q, Wang X, Wang Z, Zhou D. Isocitrate dehydrogenase mutations may be a protective mechanism in glioma patients. Med Hypotheses. 2011;76:602–3.

    Article  PubMed  CAS  Google Scholar 

  61. Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29.

    Article  PubMed  Google Scholar 

  62. Labussiere M, Idbaih A, Wang XW, Marie Y, Boisselier B, Falet C, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010;74:1886–90.

    Article  PubMed  CAS  Google Scholar 

  63. Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science. 1989;243:1564–70.

    Article  PubMed  CAS  Google Scholar 

  64. Schlessinger J. SH2/SH3 signaling proteins. Curr Opin Genet Dev. 1994;4:25–30.

    Article  PubMed  CAS  Google Scholar 

  65. di Tomaso E, London N, Fuja D, Logie J, Tyrrell JA, Kamoun W, et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One. 2009;4:e5123.

    Article  PubMed  CAS  Google Scholar 

  66. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002;62:3729–35.

    PubMed  CAS  Google Scholar 

  67. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992;52:3213–9.

    PubMed  CAS  Google Scholar 

  68. Guha A, Glowacka D, Carroll R, Dashner K, Black PM, Stiles CD. Expression of platelet derived growth factor and platelet derived growth factor receptor mRNA in a glioblastoma from a patient with Li-Fraumeni syndrome. J Neurol Neurosurg Psychiatry. 1995;58:711–4.

    Article  PubMed  CAS  Google Scholar 

  69. Huang H, Colella S, Kurrer M, Yonekawa Y, Kleihues P, Ohgaki H. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res. 2000;60:6868–74.

    PubMed  CAS  Google Scholar 

  70. Varela M, Ranuncolo SM, Morand A, Lastiri J, De Kier Joffe EB, Puricelli LI, et al. EGF-R and PDGF-R, but not bcl-2, overexpression predict overall survival in patients with low-grade astrocytomas. J Surg Oncol. 2004;86:34–40.

    Article  PubMed  CAS  Google Scholar 

  71. Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA. 1992;89:4309–13.

    Article  PubMed  CAS  Google Scholar 

  72. Liu L, Backlund LM, Nilsson BR, Grander D, Ichimura K, Goike HM, et al. Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med. 2005;83:917–26.

    Article  PubMed  CAS  Google Scholar 

  73. Rorive S, Maris C, Debeir O, Sandras F, Vidaud M, Bieche I, et al. Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse astrocytomas using microarray gene expression profiles. J Neuropathol Exp Neurol. 2006;65:794–807.

    Article  PubMed  CAS  Google Scholar 

  74. Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 2000;60:6617–22.

    PubMed  CAS  Google Scholar 

  75. Godard S, Getz G, Delorenzi M, Farmer P, Kobayashi H, Desbaillets I, et al. Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. 2003;63:6613–25.

    PubMed  CAS  Google Scholar 

  76. Hunter S, Young A, Olson J, Brat DJ, Bowers G, Wilcox JN, et al. Differential expression between pilocytic and anaplastic astrocytomas: identification of apolipoprotein D as a marker for low-grade, non-infiltrating primary CNS neoplasms. J Neuropathol Exp Neurol. 2002;61:275–81.

    PubMed  CAS  Google Scholar 

  77. Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61:6885–91.

    PubMed  CAS  Google Scholar 

  78. Gutmann DH, Hedrick NM, Li J, Nagarajan R, Perry A, Watson MA. Comparative gene expression profile analysis of neurofibromatosis 1-associated and sporadic pilocytic astrocytomas. Cancer Res. 2002;62:2085–91.

    PubMed  CAS  Google Scholar 

  79. Khatua S, Peterson KM, Brown KM, Lawlor C, Santi MR, LaFleur B, et al. Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res. 2003;63:1865–70.

    PubMed  CAS  Google Scholar 

  80. Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, et al. Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001;61:5601–10.

    PubMed  CAS  Google Scholar 

  81. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, et al. Characterization of gene expression profiles associated with glioma ­progression using oligonucleotide-based microarray analysis and real-time reverse transcription-­polymerase chain reaction. Am J Pathol. 2003;163:1033–43.

    Article  PubMed  Google Scholar 

  82. Wong KK, Chang YM, Tsang YT, Perlaky L, Su J, Adesina A, et al. Expression analysis of juvenile pilocytic astrocytomas by oligonucleotide microarray reveals two potential subgroups. Cancer Res. 2005;65:76–84.

    PubMed  CAS  Google Scholar 

  83. Huang H, Hara A, Homma T, Yonekawa Y, Ohgaki H. Altered expression of immune defense genes in pilocytic astrocytomas. J Neuropathol Exp Neurol. 2005;64:891–901.

    Article  PubMed  CAS  Google Scholar 

  84. Crawford JR, Santi MR, Thorarinsdottir HK, Cornelison R, Rushing EJ, Zhang H, et al. Detection of human herpesvirus-6 variants in pediatric brain tumors: association of viral antigen in low grade gliomas. J Clin Virol. 2009;46:37–42.

    Article  PubMed  CAS  Google Scholar 

  85. Besleaga R, Montesinos-Rongen M, Perez-Tur J, Siebert R, Deckert M. Expression of the LGI1 gene product in astrocytic gliomas: downregulation with malignant progression. Virchows Arch. 2003;443:561–4.

    Article  PubMed  CAS  Google Scholar 

  86. Weil KC, Berge MS, Sehgal A. Molecular characterization of a novel human brain tumor-associated gene BR-3. Anticancer Res. 2002;22:1467–74.

    PubMed  CAS  Google Scholar 

  87. Schlierf B, Friedrich RP, Roerig P, Felsberg J, Reifenberger G, Wegner M. Expression of SoxE and SoxD genes in human gliomas. Neuropathol Appl Neurobiol. 2007;33:621–30.

    Article  PubMed  CAS  Google Scholar 

  88. Boulay JL, Miserez AR, Zweifel C, Sivasankaran B, Kana V, Ghaffari A, et al. Loss of NOTCH2 positively predicts survival in subgroups of human glial brain tumors. PLoS One. 2007;2:e576.

    Article  PubMed  CAS  Google Scholar 

  89. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA. 1999;96:214–9.

    Article  PubMed  CAS  Google Scholar 

  90. Husemann K, Wolter M, Buschges R, Bostrom J, Sabel M, Reifenberger G. Identification of two distinct deleted regions on the short arm of chromosome 1 and rare mutation of the CDKN2C gene from 1p32 in oligodendroglial tumors. J Neuropathol Exp Neurol. 1999;58:1041–50.

    Article  PubMed  CAS  Google Scholar 

  91. Bello MJ, de Campos JM, Vaquero J, Ruiz-Barnes P, Kusak ME, Sarasa JL, et al. hRAD54 gene and 1p high-resolution deletion-mapping analyses in oligodendrogliomas. Cancer Genet Cytogenet. 2000;116:142–7.

    Article  PubMed  CAS  Google Scholar 

  92. Tews B, Roerig P, Hartmann C, Hahn M, Felsberg J, Blaschke B, et al. Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on 1p and 19q. Oncogene. 2007;26:5010–6.

    Article  PubMed  CAS  Google Scholar 

  93. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res. 2005;11:1119–28.

    PubMed  CAS  Google Scholar 

  94. McDonald JM, Dunmire V, Taylor E, Sawaya R, Bruner J, Fuller GN, et al. Attenuated expression of DFFB is a hallmark of oligodendrogliomas with 1p-allelic loss. Mol Cancer. 2005;4:35.

    Article  PubMed  CAS  Google Scholar 

  95. Dong S, Pang JC, Hu J, Zhou LF, Ng HK. Transcriptional inactivation of TP73 expression in oligodendroglial tumors. Int J Cancer. 2002;98:370–5.

    Article  PubMed  CAS  Google Scholar 

  96. McDonald JM, Dunlap S, Cogdell D, Dunmire V, Wei Q, Starzinski-Powitz A, et al. The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biol Ther. 2006;5:300–4.

    Article  PubMed  CAS  Google Scholar 

  97. Hartmann C, Johnk L, Kitange G, Wu Y, Ashworth LK, Jenkins RB, et al. Transcript map of the 3.7-Mb D19S112–S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res. 2002;62:4100–8.

    PubMed  CAS  Google Scholar 

  98. Rosenberg JE, Lisle DK, Burwick JA, Ueki K, von Deimling A, Mohrenweiser HW, et al. Refined deletion mapping of the chromosome 19q glioma tumor suppressor gene to the D19S412-STD interval. Oncogene. 1996;13:2483–5.

    PubMed  CAS  Google Scholar 

  99. Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, et al. A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics. 2000;64:44–50.

    Article  PubMed  CAS  Google Scholar 

  100. Mora J, Cheung NK, Chen L, Qin J, Gerald W. Loss of heterozygosity at 19q13.3 is associated with locally aggressive neuroblastoma. Clin Cancer Res. 2001;7:1358–61.

    PubMed  CAS  Google Scholar 

  101. Hartmann C, Mueller W, von Deimling A. Pathology and molecular genetics of oligodendroglial tumors. J Mol Med. 2004;82:638–55.

    Article  PubMed  CAS  Google Scholar 

  102. Hong C, Bollen AW, Costello JF. The contribution of genetic and epigenetic mechanisms to gene silencing in oligodendrogliomas. Cancer Res. 2003;63:7600–5.

    PubMed  CAS  Google Scholar 

  103. Wolf RM, Draghi N, Liang X, Dai C, Uhrbom L, Eklof C, et al. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev. 2003;17:476–87.

    Article  PubMed  CAS  Google Scholar 

  104. Tews B, Felsberg J, Hartmann C, Kunitz A, Hahn M, Toedt G, et al. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer. 2006;119:792–800.

    Article  PubMed  CAS  Google Scholar 

  105. Trouillard O, Aguirre-Cruz L, Hoang-Xuan K, Marie Y, Delattre JY, Sanson M. Parental 19q loss and PEG3 expression in oligodendrogliomas. Cancer Genet Cytogenet. 2004;151:182–3.

    Article  PubMed  CAS  Google Scholar 

  106. Jiang X, Yu Y, Yang HW, Agar NY, Frado L, Johnson MD. The imprinted gene PEG3 inhibits Wnt signaling and regulates glioma growth. J Biol Chem. 2010;285:8472–80.

    Article  PubMed  CAS  Google Scholar 

  107. Schramm J, editor. Low-grade gliomas, vol. 35. New York: Springer; 2010.

    Google Scholar 

  108. Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP. Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol. 1996;149:29–35.

    PubMed  CAS  Google Scholar 

  109. Di Rocco F, Carroll RS, Zhang J, Black PM. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery. 1998;42:341–6.

    Article  PubMed  Google Scholar 

  110. Hagerstrand D, Smits A, Eriksson A, Sigurdardottir S, Olofsson T, Hartman M, et al. Gene expression analyses of grade II gliomas and identification of rPTPbeta/zeta as a candidate oligodendroglioma marker. Neuro Oncol. 2008;10:2–9.

    Article  PubMed  CAS  Google Scholar 

  111. Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, et al. p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 2001;11:159–68.

    Article  PubMed  CAS  Google Scholar 

  112. Watanabe T, Katayama Y, Yoshino A, Yachi K, Ohta T, Ogino A, et al. Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol. 2007;17:5–10.

    Article  PubMed  CAS  Google Scholar 

  113. Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006;6:663–73.

    Article  PubMed  CAS  Google Scholar 

  114. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–14.

    Article  PubMed  CAS  Google Scholar 

  115. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA. 1998;95:8292–7.

    Article  PubMed  CAS  Google Scholar 

  116. Waha A, Guntner S, Huang TH, Yan PS, Arslan B, Pietsch T, et al. Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia. 2005;7:193–9.

    Article  PubMed  CAS  Google Scholar 

  117. Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamguney T, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol. 2007;9:271–9.

    Article  PubMed  CAS  Google Scholar 

  118. Kunitz A, Wolter M, van den Boom J, Felsberg J, Tews B, Hahn M, et al. DNA hypermethylation and aberrant expression of the EMP3 gene at 19q13.3 in human gliomas. Brain Pathol. 2007;17:363–70.

    Article  PubMed  CAS  Google Scholar 

  119. Costello JF, Plass C, Cavenee WK. Aberrant methylation of genes in low-grade astrocytomas. Brain Tumor Pathol. 2000;17:49–56.

    Article  PubMed  CAS  Google Scholar 

  120. Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer. 2004;4:65.

    Article  PubMed  CAS  Google Scholar 

  121. Silber JR, Bobola MS, Ghatan S, Blank A, Kolstoe DD, Berger MS. O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. Cancer Res. 1998;58:1068–73.

    PubMed  CAS  Google Scholar 

  122. Dong SM, Pang JC, Poon WS, Hu J, To KF, Chang AR, et al. Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J Neuropathol Exp Neurol. 2001;60:808–16.

    PubMed  CAS  Google Scholar 

  123. Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer. 2005;113:379–85.

    Article  PubMed  CAS  Google Scholar 

  124. Alonso ME, Bello MJ, Gonzalez-Gomez P, Arjona D, Lomas J, de Campos JM, et al. Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet. 2003;144:134–42.

    Article  PubMed  CAS  Google Scholar 

  125. Huang L, Jiang T, Yuan F, Li GL, Cui Y, Liu EZ, et al. Correlation of chromosomes 1p and 19q status and expressions of O6-methylguanine DNA methyltransferase (MGMT), p53 and Ki-67 in diffuse gliomas of World Health Organization (WHO) grades II and III: a clinicopathological study. Neuropathol Appl Neurobiol. 2009;35:367–79.

    Article  PubMed  CAS  Google Scholar 

  126. Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. 2002;103:267–75.

    Article  PubMed  CAS  Google Scholar 

  127. Levin N, Lavon I, Zelikovitsh B, Fuchs D, Bokstein F, Fellig Y, et al. Progressive low-grade oligodendrogliomas: response to temozolomide and correlation between genetic profile and O6-methylguanine DNA methyltransferase protein expression. Cancer. 2006;106:1759–65.

    Article  PubMed  CAS  Google Scholar 

  128. Hilton DA, Love S, Barber R, Ellison D, Sandeman DR. Accumulation of p53 and Ki-67 expression do not predict survival in patients with fibrillary ­astrocytomas or the response of these tumors to radiotherapy. Neurosurgery. 1998;42:724–9.

    Article  PubMed  CAS  Google Scholar 

  129. Ishii N, Tada M, Hamou MF, Janzer RC, Meagher-Villemure K, Wiestler OD, et al. Cells with TP53 mutations in low grade astrocytic tumors evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene. 1999;18:5870–8.

    Article  PubMed  CAS  Google Scholar 

  130. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27:4150–4.

    Article  PubMed  CAS  Google Scholar 

  131. Everhard S, Kaloshi G, Criniere E, Benouaich-Amiel A, Lejeune J, Marie Y, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol. 2006;60:740–3.

    Article  PubMed  CAS  Google Scholar 

  132. Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol. 2004;14:121–30.

    Article  PubMed  CAS  Google Scholar 

  133. Kujas M, Lejeune J, Benouaich-Amiel A, Criniere E, Laigle-Donadey F, Marie Y, et al. Chromosome 1p loss: a favorable prognostic factor in low-grade gliomas. Ann Neurol. 2005;58:322–6.

    Article  PubMed  CAS  Google Scholar 

  134. Sasaki H, Zlatescu MC, Betensky RA, Johnk LB, Cutone AN, Cairncross JG, et al. Histopatholo­gical-molecular genetic correlations in referral pathologist-diagnosed low-grade “oligodendroglioma”. J Neuropathol Exp Neurol. 2002;61:58–63.

    PubMed  Google Scholar 

  135. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 2001;93:1246–56.

    Article  PubMed  CAS  Google Scholar 

  136. Ino Y, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Jhung S, et al. Long ­survival and therapeutic responses in patients with ­histologically disparate high-grade gliomas demonstrating chromosome 1p loss. J Neurosurg. 2000;92:983–90.

    Article  PubMed  CAS  Google Scholar 

  137. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90:1473–9.

    Article  PubMed  CAS  Google Scholar 

  138. Kaloshi G, Benouaich-Amiel A, Diakite F, Taillibert S, Lejeune J, Laigle-Donadey F, et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology. 2007;68:1831–6.

    Article  PubMed  CAS  Google Scholar 

  139. Hoang-Xuan K, Capelle L, Kujas M, Taillibert S, Duffau H, Lejeune J, et al. Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J Clin Oncol. 2004;22:3133–8.

    Article  PubMed  CAS  Google Scholar 

  140. Bauman GS, Ino Y, Ueki K, Zlatescu MC, Fisher BJ, Macdonald DR, et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys. 2000;48:825–30.

    Article  PubMed  CAS  Google Scholar 

  141. McLendon RE, Herndon 2nd JE, West B, Reardon D, Wiltshire R, Rasheed BK, et al. Survival analysis of presumptive prognostic markers among oligodendrogliomas. Cancer. 2005;104:1693–9.

    Article  PubMed  CAS  Google Scholar 

  142. Walker C, du Plessis DG, Joyce KA, Fildes D, Gee A, Haylock B, et al. Molecular pathology and clinical characteristics of oligodendroglial neoplasms. Ann Neurol. 2005;57:855–65.

    Article  PubMed  CAS  Google Scholar 

  143. Kitange G, Misra A, Law M, Passe S, Kollmeyer TM, Maurer M, et al. Chromosomal imbalances detected by array comparative genomic hybridization in human oligodendrogliomas and mixed ­oligoastrocytomas. Genes Chromosomes Cancer. 2005;42:68–77.

    Article  PubMed  CAS  Google Scholar 

  144. Jeuken JW, Sprenger SH, Boerman RH, von Deimling A, Teepen HL, van Overbeeke JJ, et al. Subtyping of oligo-astrocytic tumours by comparative genomic hybridization. J Pathol. 2001;194:81–7.

    Article  PubMed  CAS  Google Scholar 

  145. Eoli M, Bissola L, Bruzzone MG, Pollo B, Maccagnano C, De Simone T, et al. Reclassification of oligoastrocytomas by loss of heterozygosity studies. Int J Cancer. 2006;119:84–90.

    Article  PubMed  CAS  Google Scholar 

  146. Broniscer A, Baker SJ, West AN, Fraser MM, Proko E, Kocak M, et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J Clin Oncol. 2007;25:682–9.

    Article  PubMed  CAS  Google Scholar 

  147. Bhattacharjee MB, Armstrong DD, Vogel H, Cooley LD. Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet. 1997;97:39–53.

    Article  PubMed  CAS  Google Scholar 

  148. Ward SJ, Karakoula K, Phipps KP, Harkness W, Hayward R, Thompson D, et al. Cytogenetic ­analysis of paediatric astrocytoma using comparative genomic hybridisation and fluorescence in-situ hybridisation. J Neurooncol. 2010;98:305–18.

    Article  PubMed  Google Scholar 

  149. Roberts P, Chumas PD, Picton S, Bridges L, Livingstone JH, Sheridan E. A review of the cytogenetics of 58 pediatric brain tumors. Cancer Genet Cytogenet. 2001;131:1–12.

    Article  PubMed  CAS  Google Scholar 

  150. Orr LC, Fleitz J, McGavran L, Wyatt-Ashmead J, Handler M, Foreman NK. Cytogenetics in pediatric low-grade astrocytomas. Med Pediatr Oncol. 2002;38:173–7.

    Article  PubMed  Google Scholar 

  151. Orellana C, Hernandez-Marti M, Martinez F, Castel V, Millan JM, Alvarez-Garijo JA, et al. Pediatric brain tumors: loss of heterozygosity at 17p and TP53 gene mutations. Cancer Genet Cytogenet. 1998;102:93–9.

    Article  PubMed  CAS  Google Scholar 

  152. Wong KK, Tsang YT, Chang YM, Su J, Di Francesco AM, Meco D, et al. Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res. 2006;66:11172–8.

    Article  PubMed  CAS  Google Scholar 

  153. Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T, et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 2007;9:113–23.

    Article  PubMed  CAS  Google Scholar 

  154. Miwa T, Hirose Y, Sasaki H, Ezaki T, Yoshida K, Kawase T. Single-copy gain of chromosome 1q is a negative prognostic marker in pediatric nonependymal, nonpilocytic gliomas. Neurosurgery. 2011;68:206–12.

    Article  PubMed  Google Scholar 

  155. Pollack IF, Finkelstein SD, Burnham J, Hamilton RL, Yates AJ, Holmes EJ, et al. Association between chromosome 1p and 19q loss and outcome in pediatric malignant gliomas: results from the CCG-945 cohort. Pediatr Neurosurg. 2003;39:114–21.

    Article  PubMed  Google Scholar 

  156. Myal Y, Del Bigio MR, Rhodes RH. Age-related differences in 1p and 19q deletions in oligodendrogliomas. BMC Clin Pathol. 2003;3:6.

    Article  PubMed  Google Scholar 

  157. Zhang JG, Kruse CA, Driggers L, Hoa N, Wisoff J, Allen JC, et al. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol. 2008;88:65–76.

    Article  PubMed  Google Scholar 

  158. Tabori U, Rienstein S, Dromi Y, Leider-Trejo L, Constantini S, Burstein Y, et al. Epidermal growth ­factor receptor gene amplification and expression in disseminated pediatric low-grade gliomas. J Neurosurg. 2005;103:357–61.

    PubMed  Google Scholar 

  159. Otero JJ, Rowitch D, Vandenberg S. OLIG2 is ­differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol. 2011;104:423–38.

    Article  PubMed  Google Scholar 

  160. Gupta M, Djalilvand A, Brat DJ. Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol. 2005;124:755–68.

    Article  PubMed  CAS  Google Scholar 

  161. Fuller GN, Hess KR, Rhee CH, Yung WK, Sawaya RA, Bruner JM, et al. Molecular classification of human diffuse gliomas by multidimensional scaling analysis of gene expression profiles parallels morphology-based classification, correlates with survival, and reveals clinically-relevant novel glioma subsets. Brain Pathol. 2002;12:108–16.

    Article  PubMed  CAS  Google Scholar 

  162. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.

    Article  PubMed  Google Scholar 

  163. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009;118:401–5.

    Article  PubMed  CAS  Google Scholar 

  164. Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T, et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One. 2010;5:e12548.

    Article  PubMed  CAS  Google Scholar 

  165. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas F. Marko MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Marko, N.F., Weil, R.J. (2013). The Molecular Biology of Diffuse Low-Grade Gliomas. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, London. https://doi.org/10.1007/978-1-4471-2213-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2213-5_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2212-8

  • Online ISBN: 978-1-4471-2213-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics