Advertisement

Cellular Origin of Grade II Gliomas

  • Pierre-Olivier Guichet
  • Jean-Philippe HugnotEmail author
Chapter

Abstract

Low-grade, diffuse gliomas comprise a heterogeneous group of tumors that display different phenotypes, genetic alterations, and clinical features. Important advances made over the past decade have significantly contributed to clarifying the cellular origin of these tumors. The identification of new markers for cells derived from the neural lineage combined with the detailed characterization of stem cell and progenitor cell populations that reside in the adult brain has fueled the development of original approaches to identify the cell type from which these tumors are derived. In this chapter, we will summarize our current knowledge in this dynamic field of research.

Keywords

Oligodendroglioma Neural stem cells Oligodendrocyte progenitors Transgenic mice Low-grade diffuse gliomas Glia 

References

  1. 1.
    Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513(5):532–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 2003;26(10):523–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Somjen GG. Nervenkitt: notes on the history of the concept of neuroglia. Glia. 1988;1(1):2–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics. 2012;7(4):338–53.CrossRefGoogle Scholar
  5. 5.
    Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Bailey OT. Genesis of the Percival Bailey-Cushing classification of gliomas. Pediatr Neurosci. 1985;12(4–5):261–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA. 2008;105(9):3581–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Jakovcevski I, Zecevic N. Sequence of oligodendrocyte development in the human fetal telencephalon. Glia. 2005;49(4):480–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 2010;20(2):399–411.PubMedCrossRefGoogle Scholar
  11. 11.
    Rhee W, Ray S, Yokoo H, Hoane ME, Lee CC, Mikheev AM, et al. Quantitative analysis of mitotic Olig2 cells in adult human brain and gliomas: implications for glioma histogenesis and biology. Glia. 2009;57(5):510–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Krawczyk A, Jaworska-Adamu J. Synantocytes: the fifth type of glia? In comparison with astrocytes. Folia Histochem Cytobiol. 2010;48(2):173–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Steindler DA, Pincus DW. Stem cells and neuropoiesis in the adult human brain. Lancet. 2002;359(9311):1047–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging. 2007;2(4):605–10.PubMedGoogle Scholar
  17. 17.
    Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One. 2010;5(1):e8809.PubMedCrossRefGoogle Scholar
  18. 18.
    Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci USA. 2007;104(11):4694–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW, et al. Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia. 2005;52(4):289–300.PubMedCrossRefGoogle Scholar
  20. 20.
    Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007;67(12):5727–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286(5439):548–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001;170(1):48–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, et al. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development. 2006;133(18):3671–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann 2nd G, Jiang L, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9(4):439–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333(6048):1453–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Goze C, Rigau V, Gibert L, Maudelonde T, Duffau H. Lack of complete 1p19q deletion in a consecutive series of 12 WHO grade II gliomas involving the insula: a marker of worse prognosis? J Neurooncol. 2009;91(1):1–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008;33:3–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Scherer HJ. Structural development in gliomas. Am J Cancer. 1938;34:333–51.Google Scholar
  29. 29.
    Fomchenko EI, Dougherty JD, Helmy KY, Katz AM, Pietras A, Brennan C, et al. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One. 2011;6(7):e20605.PubMedCrossRefGoogle Scholar
  30. 30.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, et al. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain. 2007;130(Pt 12):3321–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Bloch J, Kaeser M, Sadeghi Y, Rouiller EM, Redmond Jr DE, Brunet JF. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519(4):775–89.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Liberski PP. The ultrastructure of oligodendroglioma: personal experience and the review of the literature. Folia Neuropathol. 1996;34(4):206–11.PubMedGoogle Scholar
  35. 35.
    Liberski PP, Kordek R. Ultrastructural pathology of glial brain tumors revisited: a review. Ultrastruct Pathol. 1997;21(1):1–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Robertson DM, Vogel FS. Concentric lamination of glial processes in oligodendrogliomas. J Cell Biol. 1962;15:313–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Kamitani H, Masuzawa H, Sato J, Okada M. Ultrastructure of concentric laminations in primary human brain tumors. Acta Neuropathol. 1986;71(1–2):83–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Min KW, Scheithauer BW. Oligodendroglioma: the ultrastructural spectrum. Ultrastruct Pathol. 1994;18(1–2):47–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Cervos-Navarro J, Pehlivan N. Ultrastructure of oligodendrogliomas. Acta Neuropathol Suppl. 1981;7:91–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakagawa Y, Perentes E, Rubinstein LJ. Immuno­histochemical characterization of oligodendrogliomas: an analysis of multiple markers. Acta Neuropathol. 1986;72(1):15–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwechheimer K, Gass P, Berlet HH. Expression of oligodendroglia and Schwann cell markers in human nervous system tumors. An immunomorphological study and western blot analysis. Acta Neuropathol. 1992;83(3):283–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Hokama Y, Tanaka J, Nakamura H, Hori T. MBP and GFAP immunohistochemistry of oligodendrogliomas with relationship to myelin-forming glia in cell differentiation. No To Shinkei. 1986;38(4):379–86.PubMedGoogle Scholar
  43. 43.
    Tanaka J, Hokama Y, Nakamura H. Myelin basic protein as a possible marker for oligodendroglioma. Acta Pathol Jpn. 1988;38(10):1297–303.PubMedGoogle Scholar
  44. 44.
    Kubo O, Tajika Y, Toyama T, Tajika T, Sakairi M, Katahira M, et al. Clinicopathological study of oligodendroglioma with special reference to immunohistochemical investigation. No Shinkei Geka. 1988;16(9):1029–35.PubMedGoogle Scholar
  45. 45.
    Sung CC, Collins R, Li J, Pearl DK, Coons SW, Scheithauer BW, et al. Glycolipids and myelin proteins in human oligodendrogliomas. Glycoconj J. 1996;13(3):433–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Golfinos JG, Norman SA, Coons SW, Norman RA, Ballecer C, Scheck AC. Expression of the genes encoding myelin basic protein and proteolipid protein in human malignant gliomas. Clin Cancer Res. 1997;3(5):799–804.PubMedGoogle Scholar
  47. 47.
    Popko B, Pearl DK, Walker DM, Comas TC, Baerwald KD, Burger PC, et al. Molecular markers that identify human astrocytomas and oligodendrogliomas. J Neuropathol Exp Neurol. 2002;61(4):329–38.PubMedGoogle Scholar
  48. 48.
    de la Monte SM. Uniform lineage of oligodendrogliomas. Am J Pathol. 1989;135(3):529–40.PubMedGoogle Scholar
  49. 49.
    Kuhlmann T, Gutenberg A, Schulten HJ, Paulus W, Rohde V, Bruck W. Nogo-a expression in glial CNS tumors: a tool to differentiate between oligodendrogliomas and other gliomas? Am J Surg Pathol. 2008;32(10):1444–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Jung TY, Jung S, Lee KH, Cao VT, Jin SG, Moon KS, et al. Nogo-A expression in oligodendroglial tumors. Neuropathology. 2011;31(1):11–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Marucci G, Di Oto E, Farnedi A, Panzacchi R, Ligorio C, Foschini MP. Nogo-A: a useful marker for the diagnosis of oligodendroglioma and for identifying 1p19q codeletion. Hum Pathol. 2012;43(3):374–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Di Rocco F, Carroll RS, Zhang J, Black PM. Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery. 1998;42(2):341–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Nishiyama A, Chang A, Trapp BD. NG2+ glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol. 1999;58(11):1113–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Briancon-Marjollet A, Balenci L, Fernandez M, Esteve F, Honnorat J, Farion R, et al. NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N-ethyl-N-nitrosourea-induced gliomagenesis. Carcinogenesis. 2010;31(10):1718–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA. 1999;96(18):10361–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Rousseau A, Nutt CL, Betensky RA, Iafrate AJ, Han M, Ligon KL, et al. Expression of oligodendroglial and astrocytic lineage markers in diffuse gliomas: use of YKL-40, ApoE, ASCL1, and NKX2-2. J Neuropathol Exp Neurol. 2006;65(12):1149–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Riemenschneider MJ, Koy TH, Reifenberger G. Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathol. 2004;107(3):277–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Hoang-Xuan K, Aguirre-Cruz L, Mokhtari K, Marie Y, Sanson M. OLIG-1 and 2 gene expression and oligodendroglial tumours. Neuropathol Appl Neurobiol. 2002;28(2):89–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Ferletta M, Uhrbom L, Olofsson T, Ponten F, Westermark B. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B–induced gliomagenesis. Mol Cancer Res. 2007;5(9):891–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Bannykh SI, Stolt CC, Kim J, Perry A, Wegner M. Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas. J Neurooncol. 2006;76(2):115–27.PubMedCrossRefGoogle Scholar
  62. 62.
    Mukasa A, Ueki K, Ge X, Ishikawa S, Ide T, Fujimaki T, et al. Selective expression of a subset of neuronal genes in oligodendroglioma with chromosome 1p loss. Brain Pathol. 2004;14(1):34–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Daou MC, Smith TW, Litofsky NS, Hsieh CC, Ross AH. Doublecortin is preferentially expressed in invasive human brain tumors. Acta Neuropathol. 2005;110(5):472–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Vyberg M, Ulhoi BP, Teglbjaerg PS. Neuronal features of oligodendrogliomas – an ultrastructural and immunohistochemical study. Histopathology. 2007;50(7):887–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Wharton SB, Chan KK, Hamilton FA, Anderson JR. Expression of neuronal markers in oligodendrogliomas: an immunohistochemical study. Neuropathol Appl Neurobiol. 1998;24(4):302–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Dehghani F, Maronde E, Schachenmayr W, Korf HW. Neurofilament H immunoreaction in oligodendrogliomas as demonstrated by a new polyclonal antibody. Acta Neuropathol. 2000;100(2):122–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Katsetos CD, Del Valle L, Geddes JF, Aldape K, Boyd JC, Legido A, et al. Localization of the neuronal class III beta-tubulin in oligodendrogliomas: comparison with Ki-67 proliferative index and 1p/19q status. J Neuropathol Exp Neurol. 2002;61(4):307–20.PubMedGoogle Scholar
  68. 68.
    Ducray F, Criniere E, Idbaih A, Mokhtari K, Marie Y, Paris S, et al. alpha-Internexin expression identifies 1p19q codeleted gliomas. Neurology. 2009;72(2):156–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Ferrer-Luna R, Mata M, Nunez L, Calvar J, Dasi F, Arias E, et al. Loss of heterozygosity at 1p-19q induces a global change in oligodendroglial tumor gene expression. J Neurooncol. 2009;95(3):343–54.PubMedCrossRefGoogle Scholar
  70. 70.
    Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T, et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One. 2010;5(9):e12548.PubMedCrossRefGoogle Scholar
  71. 71.
    Labrakakis C, Patt S, Hartmann J, Kettenmann H. Functional GABA(A) receptors on human glioma cells. Eur J Neurosci. 1998;10(1):231–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Labrakakis C, Patt S, Hartmann J, Kettenmann H. Glutamate receptor activation can trigger electrical activity in human glioma cells. Eur J Neurosci. 1998;10(6):2153–62.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim KK, Adelstein RS, Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009;284(45):31052–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolf HK, Buslei R, Blumcke I, Wiestler OD, Pietsch T. Neural antigens in oligodendrogliomas and dysembryoplastic neuroepithelial tumors. Acta Neuropathol. 1997;94(5):436–43.PubMedCrossRefGoogle Scholar
  75. 75.
    Preusser M, Laggner U, Haberler C, Heinzl H, Budka H, Hainfellner JA. Comparative analysis of NeuN immunoreactivity in primary brain tumours: conclusions for rational use in diagnostic histopathology. Histopathology. 2006;48(4):438–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Soylemezoglu F, Onder S, Tezel GG, Berker M. Neuronal nuclear antigen (NeuN): a new tool in the diagnosis of central neurocytoma. Pathol Res Pract. 2003;199(7):463–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Patt S, Labrakakis C, Bernstein M, Weydt P, Cervos-Navarro J, Nisch G, et al. Neuron-like physiological properties of cells from human oligodendroglial tumors. Neuroscience. 1996;71(2):601–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Labrakakis C, Patt S, Weydt P, Cervos-Navarro J, Meyer R, Kettenmann H. Action potential-generating cells in human glioblastomas. J Neuropathol Exp Neurol. 1997;56(3):243–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 2000;405(6783):187–91.PubMedCrossRefGoogle Scholar
  80. 80.
    Karadottir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. 2007;145(4):1426–38.PubMedCrossRefGoogle Scholar
  81. 81.
    Barres BA, Koroshetz WJ, Swartz KJ, Chun LL, Corey DP. Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron. 1990;4(4):507–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Von Blankenfeld G, Trotter J, Kettenmann H. Expression and developmental regulation of a GABAA receptor in cultured murine cells of the oligodendrocyte lineage. Eur J Neurosci. 1991;3(4):310–6.CrossRefGoogle Scholar
  83. 83.
    Yung SY, Gokhan S, Jurcsak J, Molero AE, Abrajano JJ, Mehler MF. Differential modulation of BMP signaling promotes the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes from a common sonic hedgehog-responsive ventral forebrain progenitor species. Proc Natl Acad Sci USA. 2002;99(25):16273–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Matyja E, Taraszewska A, Naganska E, Zabek M. Phenotypic characteristics of GFAP-positive oligodendroglial tumours. Part II: ultrastructural study. Folia Neuropathol. 2001;39(2):103–10.PubMedGoogle Scholar
  85. 85.
    Saito A, Nakazato Y. Evaluation of malignant features in oligodendroglial tumors. Clin Neuropathol. 1999;18(2):61–73.PubMedGoogle Scholar
  86. 86.
    Bruner JM. Oligodendroglioma: diagnosis and prognosis. Semin Diagn Pathol. 1987;4(3):251–61.PubMedGoogle Scholar
  87. 87.
    Jagadha V, Halliday WC, Becker LE. Glial fibrillary acidic protein (GFAP) in oligodendrogliomas: a reflection of transient GFAP expression by immature oligodendroglia. Can J Neurol Sci. 1986;13(4):307–11.PubMedGoogle Scholar
  88. 88.
    Herpers MJ, Budka H. Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol. 1984;64(4):265–72.PubMedCrossRefGoogle Scholar
  89. 89.
    Kros JM, de Jong AA, van der Kwast TH. Ultrastructural characterization of transitional cells in oligodendrogliomas. J Neuropathol Exp Neurol. 1992;51(2):186–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Choi BH, Kim RC. Expression of glial fibrillary acidic protein in immature oligodendroglia. Science. 1984;223(4634):407–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Casper KB, McCarthy KD. GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci. 2006;31(4):676–84.PubMedCrossRefGoogle Scholar
  92. 92.
    Tenenbaum L, Teugels E, Dogusan Z, Avellana-Adalid V, Hooghe-Peters EL. Plastic phenotype of human oligodendroglial tumour cells in vitro. Neuropathol Appl Neurobiol. 1996;22(4):302–10.PubMedCrossRefGoogle Scholar
  93. 93.
    Raff MC, Williams BP, Miller RH. The in vitro differentiation of a bipotential glial progenitor cell. EMBO J. 1984;3(8):1857–64.PubMedGoogle Scholar
  94. 94.
    Dai C, Lyustikman Y, Shih A, Hu X, Fuller GN, Rosenblum M, et al. The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia. 2005;7(4):397–406.PubMedCrossRefGoogle Scholar
  95. 95.
    Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61(18):6713–5.PubMedGoogle Scholar
  96. 96.
    Nieuwenhuys R. The insular cortex: a review. Prog Brain Res. 2012;195:123–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Butti C, Hof PR. The insular cortex: a comparative perspective. Brain Struct Funct. 2010;214(5–6):477–93.PubMedCrossRefGoogle Scholar
  98. 98.
    Gupta M, Djalilvand A, Brat DJ. Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol. 2005;124(5):755–68.PubMedCrossRefGoogle Scholar
  99. 99.
    Daumas-Duport C, Varlet P, Tucker ML, Beuvon F, Cervera P, Chodkiewicz JP. Oligodendrogliomas. Part I: patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol. 1997;34(1):37–59.PubMedCrossRefGoogle Scholar
  100. 100.
    Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63(5):499–509.PubMedGoogle Scholar
  101. 101.
    Bouvier C, Bartoli C, Aguirre-Cruz L, Virard I, Colin C, Fernandez C, et al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J Neurosurg. 2003;99(2):344–50.PubMedCrossRefGoogle Scholar
  102. 102.
    Rebetz J, Tian D, Persson A, Widegren B, Salford LG, Englund E, et al. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS One. 2008;3(4):e1936.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang Y, Hagel C, Hamel W, Muller S, Kluwe L, Westphal M. Trk A, B, and C are commonly expressed in human astrocytes and astrocytic gliomas but not by human oligodendrocytes and oligodendroglioma. Acta Neuropathol. 1998;96(4):357–64.PubMedCrossRefGoogle Scholar
  104. 104.
    Stan AC, Walter GF, Welte K, Schneider B, Bona CA, Pietsch T. Expression of granulocyte colony-stimulating factor in recurrent glial tumors is inversely correlated with tumor progression. J Neuroimmunol. 1999;94(1–2):66–73.PubMedCrossRefGoogle Scholar
  105. 105.
    Geiger KD, Stoldt P, Schlote W, Derouiche A. Ezrin immunoreactivity is associated with increasing malignancy of astrocytic tumors but is absent in oligodendrogliomas. Am J Pathol. 2000;157(6):1785–93.PubMedCrossRefGoogle Scholar
  106. 106.
    Vaquero J, Zurita M, Coca S, Oya S, Morales C. Prognostic significance of clinical and angiogenesis-related factors in low-grade oligodendrogliomas. Surg Neurol. 2000;54(3):229–34; discussion 34.PubMedCrossRefGoogle Scholar
  107. 107.
    Liang Y, Bollen AW, Nicholas MK, Gupta N. Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas. BMC Clin Pathol. 2005;5:6.PubMedCrossRefGoogle Scholar
  108. 108.
    Hagerstrand D, Smits A, Eriksson A, Sigurdardottir S, Olofsson T, Hartman M, et al. Gene expression analyses of grade II gliomas and identification of rPTPbeta/zeta as a candidate oligodendroglioma marker. Neuro Oncol. 2008;10(1):2–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Mikami S, Hirose Y, Yoshida K, Kawase T, Ohnishi A, Nagashima K, et al. Predominant expression of OLIG2 over ID2 in oligodendroglial tumors. Virchows Arch. 2007;450(5):575–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Huang H, Okamoto Y, Yokoo H, Heppner FL, Vital A, Fevre-Montange M, et al. Gene expression profiling and subgroup identification of oligodendrogliomas. Oncogene. 2004;23(35):6012–22.PubMedCrossRefGoogle Scholar
  111. 111.
    Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J Neuropathol Exp Neurol. 2003;62(2):111–26.PubMedGoogle Scholar
  112. 112.
    Qu M, Olofsson T, Sigurdardottir S, You C, Kalimo H, Nister M, et al. Genetically distinct astrocytic and oligodendroglial components in oligoastrocytomas. Acta Neuropathol. 2007;113(2):129–36.PubMedCrossRefGoogle Scholar
  113. 113.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40.PubMedCrossRefGoogle Scholar
  114. 114.
    Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation ­dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15(15):1913–25.PubMedCrossRefGoogle Scholar
  115. 115.
    Noble M, Murray K, Stroobant P, Waterfield MD, Riddle P. Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature. 1988;333(6173):560–2.PubMedCrossRefGoogle Scholar
  116. 116.
    Jiang Y, Boije M, Westermark B, Uhrbom L. PDGF-B Can sustain self-renewal and tumorigenicity of experimental glioma-derived cancer-initiating cells by preventing oligodendrocyte differentiation. Neoplasia. 2011;13(6):492–503.PubMedGoogle Scholar
  117. 117.
    Calzolari F, Malatesta P. Recent insights into PDGF-induced gliomagenesis. Brain Pathol. 2010;20(3):527–38.PubMedCrossRefGoogle Scholar
  118. 118.
    Calzolari F, Appolloni I, Tutucci E, Caviglia S, Terrile M, Corte G, et al. Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia. 2008;10(12):1373–82, following 82.PubMedGoogle Scholar
  119. 119.
    Colin C, Baeza N, Tong S, Bouvier C, Quilichini B, Durbec P, et al. In vitro identification and functional characterization of glial precursor cells in human gliomas. Neuropathol Appl Neurobiol. 2006;32(2):189–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Martinho O, Longatto-Filho A, Lambros MB, Martins A, Pinheiro C, Silva A, et al. Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer. 2009;101(6):973–82.PubMedCrossRefGoogle Scholar
  121. 121.
    Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP. Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol. 1996;149(1):29–35.PubMedGoogle Scholar
  122. 122.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.PubMedCrossRefGoogle Scholar
  124. 124.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  125. 125.
    Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA, et al. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol. 2000;157(3):1031–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, et al. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 2003;63(5):1106–13.PubMedGoogle Scholar
  127. 127.
    Thon N, Damianoff K, Hegermann J, Grau S, Krebs B, Schnell O, et al. Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci. 2010;43(1):51–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.INSERM U1051, Université Montpellier 2, Institute for Neurosciences of Montpellier, Hôpital Saint EloiMontpellierFrance
  2. 2.Team “Brain Plasticity, Stem Cells and Glial Tumor”UM2-UM1-INSERM U1051, Institute of Neurosciences of MontpellierMontpellierFrance

Personalised recommendations