Advertisement

Contribution of Molecular Biology to the Classification of Low-Grade Diffuse Glioma

  • Hiroko OhgakiEmail author
Chapter

Abstract

Low-grade diffuse gliomas WHO grade II (diffuse astrocytoma, oligoastrocytoma, oligodendroglioma) are characterized by frequent IDH1/2 mutations (>80 %) that occur at a very early stage. In addition, diffuse astrocytomas frequently (∼60 %) carry TP53 mutations, which constitute a prognostic marker for shorter survival. Oligodendrogliomas show frequent 1p/19q loss (∼70 %), which is associated with longer survival. Molecular classification on the basis of IDH1/2 mutations, TP53 mutations, and 1p/19q loss showed a predictive power similar to histological classification with respect to patient survival. Only secondary glioblastomas that have progressed from low-grade or anaplastic astrocytomas, but not primary glioblastomas, share frequent IDH1/2 mutations with oligodendroglial tumors, suggesting that primary and secondary glioblastomas may develop from different progenitor cell populations.

Keywords

Diffuse astrocytoma Oligodendroglioma Glioblastoma IDH1 ­mutation TP53 mutation 1p/19q loss 

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. WHO classification of tumours of the central nervous system. Lyon: IARC; 2007.Google Scholar
  2. 2.
    Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer. 1997;79:1381–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Kros JM, Gorlia T, Kouwenhoven MC, Zheng PP, Collins VP, Figarella-Branger D, et al. Panel review of anaplastic oligodendroglioma from European Organization For Research and Treatment of Cancer Trial 26951: assessment of consensus in diagnosis, influence of 1p/19q loss, and correlations with outcome. J Neuropathol Exp Neurol. 2007;66:545–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Fuller CE, Schmidt RE, Roth KA, Burger PC, Scheithauer BW, Banerjee R, et al. Clinical utility of fluorescence in situ hybridization (FISH) in morphologically ambiguous gliomas with hybrid oligodendroglial/astrocytic features. J Neuropathol Exp Neurol. 2003;62:1118–28.PubMedGoogle Scholar
  5. 5.
    Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.PubMedGoogle Scholar
  8. 8.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest. 2000;80:65–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T, et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest. 2005;85:165–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohgaki H, Kleihues P. Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol. 2011;28:177–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL, Franceschi S, et al. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol. 2006;65:846–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602.PubMedCrossRefGoogle Scholar
  17. 17.
    Bleeker FE, Lamba S, Leenstra S, Troost D, Hulsebos T, Vandertop WP, et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat. 2009;30:7–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224:334–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Borger DR, Tanabe KK, Fan KC, Lopez HU, Fantin VR, Straley KS, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2011;17(1):72–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010;16:387–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Patel KP, Ravandi F, Ma D, Paladugu A, Barkoh BA, Medeiros LJ, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135:35–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28:3636–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116:2122–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia. 2010;24:1146–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, et al. IDH2 mutations are frequent in ­angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N. Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol. 2011;178:1395–402.PubMedCrossRefGoogle Scholar
  28. 28.
    Murugan AK, Bojdani E, Xing M. Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem Biophys Res Commun. 2010;393:555–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, et al. Population-based study on incidence, survival rates, and genetic alterations of low-grade astrocytomas and oligodendrogliomas. Acta Neuropathol. 2004;108:49–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P, et al. Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol. 2002;103:267–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Reifenberger G, Louis DN. Oligodendroglioma: toward molecular definitions in diagnostic neuro-­oncology. J Neuropathol Exp Neurol. 2003;62:111–26.PubMedGoogle Scholar
  32. 32.
    Devlin TM. Textbook of biochemistry with clinical correlations. Hoboken: Wiley-Liss; 2006.Google Scholar
  33. 33.
    Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem. 1999;274:30527–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol. 2011;12:83–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Figueroa ME, bdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M, et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer. 2010;10:401.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Ward PS, Patel J, Wise DR, bdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, von Deimling A, Zagzag D. R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol. 2011;121:279–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Jin G, Reitman ZJ, Spasojevic I, Batinic-Haberle I, Yang J, Schmidt-Kittler O, et al. 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One. 2011;6:e16812.PubMedCrossRefGoogle Scholar
  42. 42.
    Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol. 2009;91:233–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Kranendijk M, Struys EA, van Schaftingen E, Gibson KM, Kanhai WA, van der Knaap MS, et al. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science. 2010;330:336.PubMedCrossRefGoogle Scholar
  44. 44.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Christensen BC, Smith AA, Zheng S, Koestler DC, Houseman EA, Marsit CJ, et al. DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J Natl Cancer Inst. 2011;103:143–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim YH, Pierscianek D, Mittelbronn M, Vital A, Mariani L, Hasselblatt M, et al. TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol. 2011;64:850–2.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Bogler O, Huang HJ, Kleihues P, Cavenee WK. The p53 gene and its role in human brain tumors. Glia. 1995;15:308–27.PubMedCrossRefGoogle Scholar
  49. 49.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17:5001–14.PubMedCrossRefGoogle Scholar
  51. 51.
    Barak Y, Gottlieb E, Juven Gershon T, Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994;8:1739–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Zauberman A, Flusberg D, Haupt Y, Barak Y, Oren M. A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res. 1995;23:2584–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.PubMedCrossRefGoogle Scholar
  54. 54.
    Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358:80–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998;92:713–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Nakamura M, Watanabe T, Klangby U, Asker CE, Wiman KG, Yonekawa Y, et al. P14 Arf deletion and methylation in genetic pathways to glioblastomas. Brain Pathol. 2001;11:159–68.PubMedCrossRefGoogle Scholar
  57. 57.
    Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T. Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res. 2003;9:4884–90.PubMedGoogle Scholar
  58. 58.
    Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol. 2001;60:1181–9.PubMedGoogle Scholar
  59. 59.
    Ransom DT, Ritland SR, Kimmel DW, Moertel CA, Dahl RJ, Scheithauer BW, et al. Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas. Genes Chro­mosomes Cancer. 1992;5:348–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Bello MJ, Vaquero J, de Campos JM, Kusak ME, Sarasa JL, Saez Castresana J, et al. Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors. Int J Cancer. 1994;57:172–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol. 2004;14:121–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith JS, Tachibana I, Lee HK, Qian J, Pohl U, Mohrenweiser HW, et al. Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chromosomes Cancer. 2000;29:16–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006;66:9852–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Griffin CA, Burger P, Morsberger L, Yonescu R, Swierczynski S, Weingart JD, et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J Neuropathol Exp Neurol. 2006;65:988–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, et al. Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol. 2000;18:636–45.PubMedGoogle Scholar
  66. 66.
    Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24:2707–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Ino Y, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Jhung S, et al. Long survival and therapeutic responses in patients with histologically disparate high-grade gliomas demonstrating chromosome 1p loss. J Neurosurg. 2000;92:983–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Law ME, Templeton KL, Kitange G, Smith J, Misra A, Feuerstein BG, et al. Molecular cytogenetic analysis of chromosomes 1 and 19 in glioma cell lines. Cancer Genet Cytogenet. 2005;160:1–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Bettegowda C, Agrawal N, Jiao Y, Sausen M, Wood LD, Hruban RH, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333:1453–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, et al. Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 2012;226:7–16.PubMedCrossRefGoogle Scholar
  71. 71.
    Bralten LB, Nouwens S, Kockx C, Erdem L, Hoogenraad CC, Kros JM, et al. Absence of common somatic alterations in genes on 1p and 19q in oligodendrogliomas. PLoS One. 2011;6:e22000.PubMedCrossRefGoogle Scholar
  72. 72.
    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15:6002–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Dubbink HJ, Taal W, van Marion R, Kros JM, van Heuvel I, Bromberg JE, et al. IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology. 2009;73:1792–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27:4150–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Houillier C, Wang X, Kaloshi G, Mokhtari K, Guillevin R, Laffaire J, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75:1560–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Peraud A, Kreth FW, Wiestler OD, Kleihues P, Reulen HJ. Prognostic impact of TP53 mutations and P53 protein overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin Cancer Res. 2002;8:1117–24.PubMedGoogle Scholar
  77. 77.
    Ishii N, Tada M, Hamou MF, Janzer RC, Meagher-Villemure K, Wiestler OD, et al. Cells with TP53 mutations in low grade astrocytic tumors evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene. 1999;18:5870–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaloshi G, Ouaich-Amiel A, Diakite F, Taillibert S, Lejeune J, Laigle-Donadey F, et al. Temozolomide for low-grade gliomas: predictive impact of 1p/19q loss on response and outcome. Neurology. 2007;68:1831–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Kesari S, Schiff D, Drappatz J, LaFrankie D, Doherty L, Macklin EA, et al. Phase II study of protracted daily temozolomide for low-grade gliomas in adults. Clin Cancer Res. 2009;15:330–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90:1473–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Bauman GS, Ino Y, Ueki K, Zlatescu MC, Fisher BJ, Macdonald DR, et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys. 2000;48:825–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Maintz D, Fiedler K, Koopmann J, Rollbrocker B, Nechev S, Lenartz D, et al. Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol Exp Neurol. 1997;56:1098–104.PubMedCrossRefGoogle Scholar
  83. 83.
    Mueller W, Hartmann C, Hoffmann A, Lanksch W, Kiwit J, Tonn J, et al. Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol. 2002;161:313–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim YH, Lachuer J, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, et al. Alterations in the RB1 pathway in low-grade diffuse gliomas lacking common genetic alterations. Brain Pathol. 2011;21:645–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Cancer Genome Atlas Research Network. Compre­hensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRefGoogle Scholar
  86. 86.
    Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 2009;118:599–601.PubMedCrossRefGoogle Scholar
  87. 87.
    Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 2009;118:401–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008;67:878–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Section of Molecular PathologyInternational Agency for Research on Cancer (IARC)LyonFrance

Personalised recommendations