The Origins of Diffuse Low-Grade Gliomas (DLGGs): “Functional Theory” Versus “Molecular Theory”

  • Catherine GozéEmail author
  • Luc Taillandier
  • Valérie Rigau
  • Luc Bauchet
  • Hugues Duffau


The improved understanding of the natural course of DLGGs has allowed a paradigmatic shift in their management from a “wait-and-see” attitude to an early, individualized, and dynamic therapeutic strategy. However, optimization of this management implies to better understand the origin of DLGG. First, because its growth rate is constant during the initial presymptomatic period, it was possible to extrapolate backward in time, leading to approximate the glioma date of birth in early adulthood. Another way to improve our knowledge about the mechanisms of DLGG genesis is to study their spatial distribution. Indeed, this tumor has preferential cerebral locations, especially in the supplementary motor area or the insular lobe – while occipital DLGG is very rare. On the basis of strong relationships between DLGG development and the eloquence of brain regions frequently invaded by this tumor, we propose a “functional theory” to explain the origin of DLGG. In addition, anatomo-molecular studies showed significant correlations between the DLGG locations and tumor genetics, especially with a lower rate of 1p19q codeletion in the insula. Here, the ultrastructural mechanisms of such “molecular theory” based on a cortical origin of DLGG will be reviewed. Finally, future directions such as potential interactions between environment–brain function–tumoral genes, the study of genetic susceptibility variants in DLGGs and the possible role of hormones in their etiology will be discussed. These crucial issues illustrate very well the close relationships between the pathophysiology of gliomagenesis, the anatomo-functional organization of the brain, and the personalized management in DLGG patients.


DLGG Anatomo-molecular correlations Eloquent areas ­Brain–tumor interactions Ultrastructural mechanisms Extracellular matrix Oligoden­droglial progenitor cells Subventricular zone 


  1. 1.
    Mandonnet E, Delattre JY, Tanguy ML, Swanson KR, Carpentier AF, Duffau H, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Pallud J, Fontaine D, Duffau H, Mandonnet E, Sanai N, Taillandier L, et al. Natural history of incidental World Health Organization grade II gliomas. Ann Neurol. 2010;68:727–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Duffau H, Pallud J, Mandonnet E. Evidence for the genesis of WHO grade II glioma in an asymptomatic young adult using repeated MRIs. Acta Neurochir (Wien). 2011;153:473–7.CrossRefGoogle Scholar
  4. 4.
    Gerin C, Pallud J, Grammaticos B, Mandonnet E, Deroulers C, Varlet P, et al. Improving the time-­machine: estimating date of birth of grade II gliomas. Cell Prolif. 2012;45:76–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Duffau H, Capelle L. Preferential brain locations of low grade gliomas. Cancer. 2004;100:2622–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Laigle-Donadey F, Martin-Duverneuil N, Lejeune J, Crinière E, Capelle L, Duffau H, et al. Correlations between molecular profile and radiologic pattern in oligodendroglial tumors. Neurology. 2004;63:2360–2.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang E, Clark A, Smith J, Polley M, Chang S, Barbaro N, Parsat AT, McDermott MW, Berger MS. Functional mapping–guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. J Neurosurg. 2011;114:566–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Viegas C, Moritz-Gasser S, Rigau V, Duffau H. Occipital WHO grade II gliomas: oncological, surgical and functional considerations. Acta Neurochir (Wien). 2011;153:1907–17.CrossRefGoogle Scholar
  9. 9.
    Parisot S, Duffau H, Chemouny S, Paragios N. Graph based spatial position mapping of low-grade gliomas. Med Image Comput Comput Assist Interv. 2011;14: 508–15.PubMedGoogle Scholar
  10. 10.
    Parisot S, Duffau H, Chemouny S, Paragios N. Joint tumor segmentation and dense deformable registration of brain MR images. Med Image Comput Comput Assist Interv. 2012;15(Pt 2):651–658.Google Scholar
  11. 11.
    Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.PubMedCrossRefGoogle Scholar
  12. 12.
    Rivier F, Clarke S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage. 1997;6:288–304.PubMedCrossRefGoogle Scholar
  13. 13.
    Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay P, Cornu P, et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60:587–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C, et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci. 2006;26:6314–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kempermann G, Kuhn HG, Gage PH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Delekate A, Zagrebelsky M, Kramer S, Schwab ME, Korte M. NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proc Natl Acad Sci U S A. 2011;108:2569–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Ren X, Cui X, Lin S, Wang J, Jiang Z, Sui D, et al. Co-deletion of chromosome 1p/19q and IDH1/2 mutation in glioma subsets of brain tumors in Chinese patients. PLoS One. 2012;7:e32764.PubMedCrossRefGoogle Scholar
  18. 18.
    Gozé C, Rigau V, Gibert L, Maudelonde T, Duffau H. Lack of complete 1p19q deletion in a consecutive series of 12 WHO grade II gliomas involving the insula: the marker of worse prognosis? J Neurooncol. 2009;91:1–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, et al. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18:669–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Vergani F, Martino J, Gozé C, Rigau V, Duffau H. WHO grade II gliomas and subventricular zone: anatomical, genetic and clinical considerations. Neurosurgery. 2011;68:1293–9.PubMedGoogle Scholar
  21. 21.
    Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353:811–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Lim DA, Cha S, Mayo MC, Chen MH, Keles E, Van den Berg S, et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007;9:424–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28:2266–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1:Schwann cell origin and role of tumor environment. Science. 2002;296:920–2.PubMedCrossRefGoogle Scholar
  25. 25.
    Pong WW, Gutmann DH. The ecology of brain tumors: lessons learned from neurofibromatosis-1. Oncogene. 2011;30:1135–46.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang I, Han SJ, Kaur G, Crane C, Parsa AT. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci. 2010;17(1):6–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghosh A, Chaudhuri S. Microglial action in glioma: a boon turns bane. Immunol Lett. 2010;131:3–9.PubMedCrossRefGoogle Scholar
  28. 28.
    de Haas AH, Boddeke HW, Biber K. Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia. 2008;56:888–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99:1583–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Mercapide J, Rappa G, Lorico A. The intrinsic fusogenicity of glioma cells as a factor of transformation and progression in the tumor microenvironment. Int J Cancer. 2012;131:334–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, et al. Isolation of a new cell population in the glioblastoma microenvironment. J Neurooncol. 2012;106:493–504.PubMedCrossRefGoogle Scholar
  32. 32.
    Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36:1046–69.PubMedCrossRefGoogle Scholar
  33. 33.
    Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Ulrich TA, de Juan Pardo EM, Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 2009;69:4167–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Elkin BS, Azeloglu EU, Costa KD, Morrison 3rd B. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma. 2007;24:812–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Watkins S, Sontheimer H. Hydrodynamic cellular volume changes enable glioma cell invasion. J Neurosci. 2011;31:17250–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res. 2007;67:890–900.PubMedCrossRefGoogle Scholar
  38. 38.
    Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28:1337–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Zlatescu MC, TehraniYazdi A, Sasaki H, Megyesi JF, Betensky RA, Louis DN, et al. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001;61:6713–5.PubMedGoogle Scholar
  40. 40.
    Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, et al. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20:328–40.PubMedCrossRefGoogle Scholar
  42. 42.
    McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. 2008;107:1–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, et al. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 2010;20:399–411.PubMedCrossRefGoogle Scholar
  44. 44.
    Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 2009;15:45–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Dimov I, Tasić-Dimov D, Conić I, Stefanovic V. Glioblastoma multiforme stem cells. Scientific World Journal. 2011;11:930–58.PubMedCrossRefGoogle Scholar
  46. 46.
    Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29:4482–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain. 2007;130:898–914.PubMedCrossRefGoogle Scholar
  48. 48.
    Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4: 476–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65: 131–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56:992–1000.PubMedCrossRefGoogle Scholar
  51. 51.
    Duffau H. Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol. 2009;21:543–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Duffau H. The challenge to remove diffuse low grade gliomas while preserving brain functions. Acta Neurochir (Wien). 2012;154:569–74.CrossRefGoogle Scholar
  53. 53.
    Duffau H, Gatignol P, Mandonnet M, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109:461–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Yordanova Y, Moritz-Gasser S, Duffau H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011;115:232–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Mariani L, Deiana G, Vassella E, Fathi AR, Murtin C, Arnold M, et al. Loss of heterozygosity 1p36 and 19q13 is a prognostic factor for overall survival in patients with diffuse WHO grade 2 gliomas treated without chemotherapy. J Clin Oncol. 2006;24:4758–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Gozé C, Bezzina C, Gozé E, Rigau V, Maudelonde T, Bauchet L, et al. 1P19Q loss but not IDH1 mutations influences WHO grade II gliomas spontaneous growth. J Neurooncol. 2012;108:69–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Soffietti R, Baumert B, Bello L, von Deimling A, Duffau H, Frenay M, et al. Guidelines on management of low grade gliomas: report of an EFNS-EANO task force. Eur J Neurol. 2010;17:1124–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Duffau H, Taillandier L, Capelle L. Radical surgery after chemotherapy: a new therapeutic strategy to envision in grade II glioma. J Neurooncol. 2006;80:171–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Blonski M, Taillandier L, Herbet G, Maldonado IL, Beauchesne P, Fabbro M, et al. Combination of neoadjuvant chemotherapy followed by surgical resection as new strategy for WHO grade II gliomas: a study of cognitive status and quality of life. J Neurooncol. 2012;106:353–66.PubMedCrossRefGoogle Scholar
  60. 60.
    Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric WHO grade II gliomas: a series of 1097 cases. J Neurosurg. (in press).Google Scholar
  61. 61.
    Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009;27:E7.PubMedCrossRefGoogle Scholar
  62. 62.
    Zouaoui S, Darlix A, Virion JM, Rigau V, Mathieu-Daudé H, Bauchet F, et al. [Répartition géorgraphique des gliomes diffus de grade II et III, incidents entre 2006 et 2009, en France: résultats préliminaires]. In: Meeting of the Association de Neurooncologie d’Expression Française (ANOCEF) Deauville, 17–18 July 2011 (Abstract).Google Scholar
  63. 63.
    Egan KM, Thompson RC, Nabors LB, Olson JJ, Brat DJ, Larocca RV, et al. Cancer susceptibility variants and the risk of adult glioma in a US case-control study. J Neurooncol. 2011;104:535–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, et al. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet. 2011;20:2897–904.PubMedCrossRefGoogle Scholar
  65. 65.
    Melin B. Genetic causes of glioma: new leads in the labyrinth. Curr Opin Oncol. 2011;23:643–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu Y, Shete S, Hosking FJ, Robertson LB, Bondy ML, Houlston RS. New insights into susceptibility to glioma. Arch Neurol. 2010;67:275–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kabat GC, Etgen AM, Rohan TE. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol Biomarkers Prev. 2010;19:2421–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Pallud J, Duffau H, Razak RA, Barbarino-Monnier P, Capelle L, Fontaine D, et al. Influence of pregnancy in the behavior of diffuse gliomas: clinical cases of a French glioma study group. J Neurol. 2009;256:2014–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Pallud J, Mandonnet E, Deroulers C, Fontaine D, Badoual M, Capelle L, et al. Pregnancy increases the growth rates of World Health Organization grade II gliomas. Ann Neurol. 2010;67:398–404.PubMedGoogle Scholar
  70. 70.
    Duffau H. In: Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Wien/New-York: Springer; 2011.Google Scholar
  71. 71.
    Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir. 2012;154:757–84.Google Scholar
  72. 72.
    Duffau H. The rationale to perform early resection in incidental diffuse low-grade glioma: toward a “preventive surgical neurooncology”. World Neurosurg. 2012;S1878–8750(12):00672–9.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Catherine Gozé
    • 1
    • 2
    Email author
  • Luc Taillandier
    • 3
  • Valérie Rigau
    • 4
    • 5
  • Luc Bauchet
    • 6
    • 7
    • 8
  • Hugues Duffau
    • 9
    • 10
  1. 1.Department of Cellular BiologyMontpellier University Medical CenterMontpellierFrance
  2. 2.Institute for Neurosciences of Montpellier, Team “Brain Plasticity, Stem Cells and Glial Tumors”Montpellier University Medical CenterMontpellierFrance
  3. 3.Department of NeurologyNancy University Medical Center, Hôpital centralNancyFrance
  4. 4.Cytology and Anatomical Pathology LaboratoryMontpellier University Medical Center, Gui de Chauliac HospitalMontpellierFrance
  5. 5.Team “Neuronal Death and Epilepsia”CNRS UMR 5203 INSERM U661 UM1-UM2MontpellierFrance
  6. 6.Institute for Neurosciences of Montpellier, Team “Brain Plasticity, Stem Cells and Glial Tumors”National Institute for Health and Medical Research (INSERM), U1051, Montpellier University Medical CenterMontpellierFrance
  7. 7.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellierFrance
  8. 8.French Brain Tumor DataBase, Groupe de Neuro-Oncologie du Languedoc-Roussillon, Registre des Tumeurs de l’HéraultCentre de Lutte Contre le Cancer Val d’AurelleMontpellierFrance
  9. 9.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellier Cedex 5France
  10. 10.National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team “Brain Plasticity, Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance

Personalised recommendations