Toward the Definition of New Endpoints

  • Emmanuel Mandonnet
  • Luc BauchetEmail author
  • Luc Taillandier
  • Hugues Duffau


Despite considerable advances in the different treatment modalities, there is no evidence-based consensus in the therapeutic management of diffuse low-grade glioma (DLGG). The typically long overall survival of patients with DLGG makes the usual methodology in oncology of randomized trials inadequate. Moreover, any evaluation of treatment efficacy on overall survival has to be associated with an analysis of functional status in these young patients, who are often not that much affected in the initial phase of their disease. In a first step, we propose a new method to compare the efficacy of the different strategies (advocated in different centers): plotting the time to malignant progression versus the time with quality of life. In a second step, new criteria of response to a single treatment are defined on morphological MRI. Contrarily to previous work, our approach takes into account not only the tumor size evolution but also the dynamic changes induced by the therapy.


Endpoint determination Functional status Low grade glioma Malignant progression Neuro-oncology Neurosurgery Quality of life 


  1. 1.
    Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.PubMedGoogle Scholar
  2. 2.
    van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, Armstrong T, Choucair A, Waldman AD, Gorlia T, Chamberlain M, Baumert BG, Vogelbaum MA, Macdonald DR, Reardon DA, Wen PY, Chang SM, Jacobs AH. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12:583.PubMedCrossRefGoogle Scholar
  3. 3.
    van den Bent MJ, Afra D, de Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmstrom PO, Collette L, Pierart M, Mirimanoff R, Karim AB. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet. 2005;366:985–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, Vandenberg S, McDermott MW, Berger MS. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Brasil Caseiras G, Ciccarelli O, Altmann DR, Benton CE, Tozer DJ, Tofts PS, Yousry TA, Rees J, Waldman AD, Jager HR. Low-grade gliomas: six-month tumor growth predicts patient outcome better than admission tumor volume, relative cerebral blood volume, and apparent diffusion coefficient. Radiology. 2009;253:505–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Hlaihel C, Guilloton L, Guyotat J, Streichenberger N, Honnorat J, Cotton F. Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-grade oligodendrogliomas. J Neurooncol. 2010;97:73–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Mandonnet E, Duffau H, Bauchet L. A new tool for grade II glioma studies: plotting cumulative time with quality of life versus time to malignant transformation. J Neurooncol. 2011;106:213–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Meyers CA, Brown PD. Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol. 2006;24:1305–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Meyers CA, Rock EP, Fine HA. Refining endpoints in brain tumor clinical trials. J Neurooncol. 2012;108(2):227–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Weitzner MA, Meyers CA, Gelke CK, Byrne KS, Cella DF, Levin VA. The Functional Assessment of Cancer Therapy (FACT) scale. Development of a brain subscale and revalidation of the general version (FACT-G) in patients with primary brain tumors. Cancer. 1995;75:1151–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, Yoon YH, Lee EJ, Yang MC, Lewis RF, Harris GJ, Lev M, Schaefer PW, Buchbinder BR, Barest G, Yamada K, Ponzo J, Kwon HY, Gemmete J, Farkas J, Tievsky AL, Ziegler RB, Salhus MR, Weisskoff R. Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol. 2001;19:551–7.PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Emmanuel Mandonnet
    • 1
  • Luc Bauchet
    • 2
    • 3
    • 4
    Email author
  • Luc Taillandier
    • 5
  • Hugues Duffau
    • 6
    • 7
  1. 1.Department of NeurosurgeryLariboisière HospitalParisFrance
  2. 2.Department of Neurosurgery, Hôpital Gui de ChauliacCentre Hospitalier UniversitaireMontpellierFrance
  3. 3.INSERM U1051, Institute for Neurosciences of MontpellierMontpellierFrance
  4. 4.French Brain Tumor DataBase, Groupe de Neuro-Oncologie du Languedoc-Roussillon, Registre des Tumeurs de l’HéraultCentre de Lutte Contre le CancerMontpellierFrance
  5. 5.Neurooncology Unit, Department of Neurology, Hopital CentralUniversity HospitalNancyFrance
  6. 6.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellier Cedex 5France
  7. 7.National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team “Brain Plasticity, Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance

Personalised recommendations